Bug Summary

File:kern/kern_sig.c
Warning:line 851, column 11
Copies out a struct with uncleared padding (>= 4 bytes)

Annotated Source Code

1/*-
2 * Copyright (c) 1982, 1986, 1989, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)kern_sig.c 8.7 (Berkeley) 4/18/94
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: releng/11.0/sys/kern/kern_sig.c 302328 2016-07-03 18:19:48Z kib $")__asm__(".ident\t\"" "$FreeBSD: releng/11.0/sys/kern/kern_sig.c 302328 2016-07-03 18:19:48Z kib $"
"\"")
;
39
40#include "opt_compat.h"
41#include "opt_gzio.h"
42#include "opt_ktrace.h"
43
44#include <sys/param.h>
45#include <sys/ctype.h>
46#include <sys/systm.h>
47#include <sys/signalvar.h>
48#include <sys/vnode.h>
49#include <sys/acct.h>
50#include <sys/bus.h>
51#include <sys/capsicum.h>
52#include <sys/condvar.h>
53#include <sys/event.h>
54#include <sys/fcntl.h>
55#include <sys/imgact.h>
56#include <sys/kernel.h>
57#include <sys/ktr.h>
58#include <sys/ktrace.h>
59#include <sys/lock.h>
60#include <sys/malloc.h>
61#include <sys/mutex.h>
62#include <sys/refcount.h>
63#include <sys/namei.h>
64#include <sys/proc.h>
65#include <sys/procdesc.h>
66#include <sys/posix4.h>
67#include <sys/pioctl.h>
68#include <sys/racct.h>
69#include <sys/resourcevar.h>
70#include <sys/sdt.h>
71#include <sys/sbuf.h>
72#include <sys/sleepqueue.h>
73#include <sys/smp.h>
74#include <sys/stat.h>
75#include <sys/sx.h>
76#include <sys/syscallsubr.h>
77#include <sys/sysctl.h>
78#include <sys/sysent.h>
79#include <sys/syslog.h>
80#include <sys/sysproto.h>
81#include <sys/timers.h>
82#include <sys/unistd.h>
83#include <sys/wait.h>
84#include <vm/vm.h>
85#include <vm/vm_extern.h>
86#include <vm/uma.h>
87
88#include <sys/jail.h>
89
90#include <machine/cpu.h>
91
92#include <security/audit/audit.h>
93
94#define ONSIG32 32 /* NSIG for osig* syscalls. XXX. */
95
96SDT_PROVIDER_DECLARE(proc)extern struct sdt_provider sdt_provider_proc[1];
97SDT_PROBE_DEFINE3(proc, , , signal__send,struct sdt_probe sdt_proc___signal__send[1] = { { sizeof(struct
sdt_probe), sdt_provider_proc, { ((void *)0), ((void *)0) },
{ ((void *)0), ((void *)0) }, "", "", "signal__send", 0, 0, (
(void *)0) } }; __asm__(".globl " "__start_set_sdt_probes_set"
); __asm__(".globl " "__stop_set_sdt_probes_set"); static void
const * const __set_sdt_probes_set_sym_sdt_proc___signal__send
__attribute__((__section__("set_" "sdt_probes_set"))) __attribute__
((__used__)) = &(sdt_proc___signal__send);; static struct
sdt_argtype sdta_proc___signal__send0[1] = { { 0, "struct thread *"
, ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__send
} }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__send0 __attribute__
((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__
)) = &(sdta_proc___signal__send0);; static struct sdt_argtype
sdta_proc___signal__send1[1] = { { 1, "struct proc *", ((void
*)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__send }
}; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__send1 __attribute__
((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__
)) = &(sdta_proc___signal__send1);; static struct sdt_argtype
sdta_proc___signal__send2[1] = { { 2, "int", ((void *)0), { (
(void *)0), ((void *)0) }, sdt_proc___signal__send } }; __asm__
(".globl " "__start_set_sdt_argtypes_set"); __asm__(".globl "
"__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__send2
__attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__
((__used__)) = &(sdta_proc___signal__send2);
98 "struct thread *", "struct proc *", "int")struct sdt_probe sdt_proc___signal__send[1] = { { sizeof(struct
sdt_probe), sdt_provider_proc, { ((void *)0), ((void *)0) },
{ ((void *)0), ((void *)0) }, "", "", "signal__send", 0, 0, (
(void *)0) } }; __asm__(".globl " "__start_set_sdt_probes_set"
); __asm__(".globl " "__stop_set_sdt_probes_set"); static void
const * const __set_sdt_probes_set_sym_sdt_proc___signal__send
__attribute__((__section__("set_" "sdt_probes_set"))) __attribute__
((__used__)) = &(sdt_proc___signal__send);; static struct
sdt_argtype sdta_proc___signal__send0[1] = { { 0, "struct thread *"
, ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__send
} }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__send0 __attribute__
((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__
)) = &(sdta_proc___signal__send0);; static struct sdt_argtype
sdta_proc___signal__send1[1] = { { 1, "struct proc *", ((void
*)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__send }
}; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__send1 __attribute__
((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__
)) = &(sdta_proc___signal__send1);; static struct sdt_argtype
sdta_proc___signal__send2[1] = { { 2, "int", ((void *)0), { (
(void *)0), ((void *)0) }, sdt_proc___signal__send } }; __asm__
(".globl " "__start_set_sdt_argtypes_set"); __asm__(".globl "
"__stop_set_sdt_argtypes_set"); static void const * const __set_sdt_argtypes_set_sym_sdta_proc___signal__send2
__attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__
((__used__)) = &(sdta_proc___signal__send2);
;
99SDT_PROBE_DEFINE2(proc, , , signal__clear,struct sdt_probe sdt_proc___signal__clear[1] = { { sizeof(struct
sdt_probe), sdt_provider_proc, { ((void *)0), ((void *)0) },
{ ((void *)0), ((void *)0) }, "", "", "signal__clear", 0, 0,
((void *)0) } }; __asm__(".globl " "__start_set_sdt_probes_set"
); __asm__(".globl " "__stop_set_sdt_probes_set"); static void
const * const __set_sdt_probes_set_sym_sdt_proc___signal__clear
__attribute__((__section__("set_" "sdt_probes_set"))) __attribute__
((__used__)) = &(sdt_proc___signal__clear);; static struct
sdt_argtype sdta_proc___signal__clear0[1] = { { 0, "int", ((
void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__clear
} }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__clear0 __attribute__
((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__
)) = &(sdta_proc___signal__clear0);; static struct sdt_argtype
sdta_proc___signal__clear1[1] = { { 1, "ksiginfo_t *", ((void
*)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__clear
} }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__clear1 __attribute__
((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__
)) = &(sdta_proc___signal__clear1);
100 "int", "ksiginfo_t *")struct sdt_probe sdt_proc___signal__clear[1] = { { sizeof(struct
sdt_probe), sdt_provider_proc, { ((void *)0), ((void *)0) },
{ ((void *)0), ((void *)0) }, "", "", "signal__clear", 0, 0,
((void *)0) } }; __asm__(".globl " "__start_set_sdt_probes_set"
); __asm__(".globl " "__stop_set_sdt_probes_set"); static void
const * const __set_sdt_probes_set_sym_sdt_proc___signal__clear
__attribute__((__section__("set_" "sdt_probes_set"))) __attribute__
((__used__)) = &(sdt_proc___signal__clear);; static struct
sdt_argtype sdta_proc___signal__clear0[1] = { { 0, "int", ((
void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__clear
} }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__clear0 __attribute__
((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__
)) = &(sdta_proc___signal__clear0);; static struct sdt_argtype
sdta_proc___signal__clear1[1] = { { 1, "ksiginfo_t *", ((void
*)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__clear
} }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__clear1 __attribute__
((__section__("set_" "sdt_argtypes_set"))) __attribute__((__used__
)) = &(sdta_proc___signal__clear1);
;
101SDT_PROBE_DEFINE3(proc, , , signal__discard,struct sdt_probe sdt_proc___signal__discard[1] = { { sizeof(struct
sdt_probe), sdt_provider_proc, { ((void *)0), ((void *)0) },
{ ((void *)0), ((void *)0) }, "", "", "signal__discard", 0, 0
, ((void *)0) } }; __asm__(".globl " "__start_set_sdt_probes_set"
); __asm__(".globl " "__stop_set_sdt_probes_set"); static void
const * const __set_sdt_probes_set_sym_sdt_proc___signal__discard
__attribute__((__section__("set_" "sdt_probes_set"))) __attribute__
((__used__)) = &(sdt_proc___signal__discard);; static struct
sdt_argtype sdta_proc___signal__discard0[1] = { { 0, "struct thread *"
, ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__discard
} }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__discard0
__attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__
((__used__)) = &(sdta_proc___signal__discard0);; static struct
sdt_argtype sdta_proc___signal__discard1[1] = { { 1, "struct proc *"
, ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__discard
} }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__discard1
__attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__
((__used__)) = &(sdta_proc___signal__discard1);; static struct
sdt_argtype sdta_proc___signal__discard2[1] = { { 2, "int", (
(void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__discard
} }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__discard2
__attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__
((__used__)) = &(sdta_proc___signal__discard2);
102 "struct thread *", "struct proc *", "int")struct sdt_probe sdt_proc___signal__discard[1] = { { sizeof(struct
sdt_probe), sdt_provider_proc, { ((void *)0), ((void *)0) },
{ ((void *)0), ((void *)0) }, "", "", "signal__discard", 0, 0
, ((void *)0) } }; __asm__(".globl " "__start_set_sdt_probes_set"
); __asm__(".globl " "__stop_set_sdt_probes_set"); static void
const * const __set_sdt_probes_set_sym_sdt_proc___signal__discard
__attribute__((__section__("set_" "sdt_probes_set"))) __attribute__
((__used__)) = &(sdt_proc___signal__discard);; static struct
sdt_argtype sdta_proc___signal__discard0[1] = { { 0, "struct thread *"
, ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__discard
} }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__discard0
__attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__
((__used__)) = &(sdta_proc___signal__discard0);; static struct
sdt_argtype sdta_proc___signal__discard1[1] = { { 1, "struct proc *"
, ((void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__discard
} }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__discard1
__attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__
((__used__)) = &(sdta_proc___signal__discard1);; static struct
sdt_argtype sdta_proc___signal__discard2[1] = { { 2, "int", (
(void *)0), { ((void *)0), ((void *)0) }, sdt_proc___signal__discard
} }; __asm__(".globl " "__start_set_sdt_argtypes_set"); __asm__
(".globl " "__stop_set_sdt_argtypes_set"); static void const *
const __set_sdt_argtypes_set_sym_sdta_proc___signal__discard2
__attribute__((__section__("set_" "sdt_argtypes_set"))) __attribute__
((__used__)) = &(sdta_proc___signal__discard2);
;
103
104static int coredump(struct thread *);
105static int killpg1(struct thread *td, int sig, int pgid, int all,
106 ksiginfo_t *ksi);
107static int issignal(struct thread *td);
108static int sigprop(int sig);
109static void tdsigwakeup(struct thread *, int, sig_t, int);
110static int sig_suspend_threads(struct thread *, struct proc *, int);
111static int filt_sigattach(struct knote *kn);
112static void filt_sigdetach(struct knote *kn);
113static int filt_signal(struct knote *kn, long hint);
114static struct thread *sigtd(struct proc *p, int sig, int prop);
115static void sigqueue_start(void);
116
117static uma_zone_t ksiginfo_zone = NULL((void *)0);
118struct filterops sig_filtops = {
119 .f_isfd = 0,
120 .f_attach = filt_sigattach,
121 .f_detach = filt_sigdetach,
122 .f_event = filt_signal,
123};
124
125static int kern_logsigexit = 1;
126SYSCTL_INT(_kern, KERN_LOGSIGEXIT, logsigexit, CTLFLAG_RW,static struct sysctl_oid sysctl___kern_logsigexit = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = (34), .oid_kind = (2 | 0x00040000
| ((0x80000000|0x40000000))), .oid_arg1 = (&kern_logsigexit
), .oid_arg2 = (0), .oid_name = ("logsigexit"), .oid_handler =
(sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Log processes quitting on abnormal signals to syslog(3)"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_logsigexit
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_logsigexit); _Static_assert
(((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000
|0x40000000)) & 0) == 2) && sizeof(int) == sizeof
(*(&kern_logsigexit)), "compile-time assertion failed")
127 &kern_logsigexit, 0,static struct sysctl_oid sysctl___kern_logsigexit = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = (34), .oid_kind = (2 | 0x00040000
| ((0x80000000|0x40000000))), .oid_arg1 = (&kern_logsigexit
), .oid_arg2 = (0), .oid_name = ("logsigexit"), .oid_handler =
(sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Log processes quitting on abnormal signals to syslog(3)"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_logsigexit
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_logsigexit); _Static_assert
(((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000
|0x40000000)) & 0) == 2) && sizeof(int) == sizeof
(*(&kern_logsigexit)), "compile-time assertion failed")
128 "Log processes quitting on abnormal signals to syslog(3)")static struct sysctl_oid sysctl___kern_logsigexit = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = (34), .oid_kind = (2 | 0x00040000
| ((0x80000000|0x40000000))), .oid_arg1 = (&kern_logsigexit
), .oid_arg2 = (0), .oid_name = ("logsigexit"), .oid_handler =
(sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Log processes quitting on abnormal signals to syslog(3)"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_logsigexit
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_logsigexit); _Static_assert
(((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000
|0x40000000)) & 0) == 2) && sizeof(int) == sizeof
(*(&kern_logsigexit)), "compile-time assertion failed")
;
129
130static int kern_forcesigexit = 1;
131SYSCTL_INT(_kern, OID_AUTO, forcesigexit, CTLFLAG_RW,static struct sysctl_oid sysctl___kern_forcesigexit = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000
| ((0x80000000|0x40000000))), .oid_arg1 = (&kern_forcesigexit
), .oid_arg2 = (0), .oid_name = ("forcesigexit"), .oid_handler
= (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Force trap signal to be handled"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_forcesigexit
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_forcesigexit); _Static_assert
(((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000
|0x40000000)) & 0) == 2) && sizeof(int) == sizeof
(*(&kern_forcesigexit)), "compile-time assertion failed")
132 &kern_forcesigexit, 0, "Force trap signal to be handled")static struct sysctl_oid sysctl___kern_forcesigexit = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000
| ((0x80000000|0x40000000))), .oid_arg1 = (&kern_forcesigexit
), .oid_arg2 = (0), .oid_name = ("forcesigexit"), .oid_handler
= (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Force trap signal to be handled"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_forcesigexit
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_forcesigexit); _Static_assert
(((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000
|0x40000000)) & 0) == 2) && sizeof(int) == sizeof
(*(&kern_forcesigexit)), "compile-time assertion failed")
;
133
134static SYSCTL_NODE(_kern, OID_AUTO, sigqueue, CTLFLAG_RW, 0,struct sysctl_oid sysctl___kern_sigqueue = { .oid_parent = ((
&(&sysctl___kern)->oid_children)), .oid_children =
{ ((void *)0) }, .oid_number = ((-1)), .oid_kind = (1|((0x80000000
|0x40000000))), .oid_arg1 = (((void *)0)), .oid_arg2 = (0), .
oid_name = ("sigqueue"), .oid_handler = (0), .oid_fmt = ("N")
, .oid_descr = "POSIX real time signal" }; __asm__(".globl " "__start_set_sysctl_set"
); __asm__(".globl " "__stop_set_sysctl_set"); static void const
* const __set_sysctl_set_sym_sysctl___kern_sigqueue __attribute__
((__section__("set_" "sysctl_set"))) __attribute__((__used__)
) = &(sysctl___kern_sigqueue); _Static_assert((((0x80000000
|0x40000000)) & 0xf) == 0 || (((0x80000000|0x40000000)) &
0) == 1, "compile-time assertion failed")
135 "POSIX real time signal")struct sysctl_oid sysctl___kern_sigqueue = { .oid_parent = ((
&(&sysctl___kern)->oid_children)), .oid_children =
{ ((void *)0) }, .oid_number = ((-1)), .oid_kind = (1|((0x80000000
|0x40000000))), .oid_arg1 = (((void *)0)), .oid_arg2 = (0), .
oid_name = ("sigqueue"), .oid_handler = (0), .oid_fmt = ("N")
, .oid_descr = "POSIX real time signal" }; __asm__(".globl " "__start_set_sysctl_set"
); __asm__(".globl " "__stop_set_sysctl_set"); static void const
* const __set_sysctl_set_sym_sysctl___kern_sigqueue __attribute__
((__section__("set_" "sysctl_set"))) __attribute__((__used__)
) = &(sysctl___kern_sigqueue); _Static_assert((((0x80000000
|0x40000000)) & 0xf) == 0 || (((0x80000000|0x40000000)) &
0) == 1, "compile-time assertion failed")
;
136
137static int max_pending_per_proc = 128;
138SYSCTL_INT(_kern_sigqueue, OID_AUTO, max_pending_per_proc, CTLFLAG_RW,static struct sysctl_oid sysctl___kern_sigqueue_max_pending_per_proc
= { .oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children
)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (
&max_pending_per_proc), .oid_arg2 = (0), .oid_name = ("max_pending_per_proc"
), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr
= "Max pending signals per proc" }; __asm__(".globl " "__start_set_sysctl_set"
); __asm__(".globl " "__stop_set_sysctl_set"); static void const
* const __set_sysctl_set_sym_sysctl___kern_sigqueue_max_pending_per_proc
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_sigqueue_max_pending_per_proc
); _Static_assert(((((0x80000000|0x40000000)) & 0xf) == 0
|| (((0x80000000|0x40000000)) & 0) == 2) && sizeof
(int) == sizeof(*(&max_pending_per_proc)), "compile-time assertion failed"
)
139 &max_pending_per_proc, 0, "Max pending signals per proc")static struct sysctl_oid sysctl___kern_sigqueue_max_pending_per_proc
= { .oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children
)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | ((0x80000000|0x40000000))), .oid_arg1 = (
&max_pending_per_proc), .oid_arg2 = (0), .oid_name = ("max_pending_per_proc"
), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr
= "Max pending signals per proc" }; __asm__(".globl " "__start_set_sysctl_set"
); __asm__(".globl " "__stop_set_sysctl_set"); static void const
* const __set_sysctl_set_sym_sysctl___kern_sigqueue_max_pending_per_proc
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_sigqueue_max_pending_per_proc
); _Static_assert(((((0x80000000|0x40000000)) & 0xf) == 0
|| (((0x80000000|0x40000000)) & 0) == 2) && sizeof
(int) == sizeof(*(&max_pending_per_proc)), "compile-time assertion failed"
)
;
140
141static int preallocate_siginfo = 1024;
142SYSCTL_INT(_kern_sigqueue, OID_AUTO, preallocate, CTLFLAG_RDTUN,static struct sysctl_oid sysctl___kern_sigqueue_preallocate =
{ .oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children
)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | ((0x80000000|0x00080000))), .oid_arg1 = (
&preallocate_siginfo), .oid_arg2 = (0), .oid_name = ("preallocate"
), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr
= "Preallocated signal memory size" }; __asm__(".globl " "__start_set_sysctl_set"
); __asm__(".globl " "__stop_set_sysctl_set"); static void const
* const __set_sysctl_set_sym_sysctl___kern_sigqueue_preallocate
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_sigqueue_preallocate); _Static_assert
(((((0x80000000|0x00080000)) & 0xf) == 0 || (((0x80000000
|0x00080000)) & 0) == 2) && sizeof(int) == sizeof
(*(&preallocate_siginfo)), "compile-time assertion failed"
)
143 &preallocate_siginfo, 0, "Preallocated signal memory size")static struct sysctl_oid sysctl___kern_sigqueue_preallocate =
{ .oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children
)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | ((0x80000000|0x00080000))), .oid_arg1 = (
&preallocate_siginfo), .oid_arg2 = (0), .oid_name = ("preallocate"
), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr
= "Preallocated signal memory size" }; __asm__(".globl " "__start_set_sysctl_set"
); __asm__(".globl " "__stop_set_sysctl_set"); static void const
* const __set_sysctl_set_sym_sysctl___kern_sigqueue_preallocate
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_sigqueue_preallocate); _Static_assert
(((((0x80000000|0x00080000)) & 0xf) == 0 || (((0x80000000
|0x00080000)) & 0) == 2) && sizeof(int) == sizeof
(*(&preallocate_siginfo)), "compile-time assertion failed"
)
;
144
145static int signal_overflow = 0;
146SYSCTL_INT(_kern_sigqueue, OID_AUTO, overflow, CTLFLAG_RD,static struct sysctl_oid sysctl___kern_sigqueue_overflow = { .
oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children
)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | (0x80000000)), .oid_arg1 = (&signal_overflow
), .oid_arg2 = (0), .oid_name = ("overflow"), .oid_handler = (
sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Number of signals overflew"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue_overflow
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_sigqueue_overflow); _Static_assert
((((0x80000000) & 0xf) == 0 || ((0x80000000) & 0) == 2
) && sizeof(int) == sizeof(*(&signal_overflow)), "compile-time assertion failed"
)
147 &signal_overflow, 0, "Number of signals overflew")static struct sysctl_oid sysctl___kern_sigqueue_overflow = { .
oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children
)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | (0x80000000)), .oid_arg1 = (&signal_overflow
), .oid_arg2 = (0), .oid_name = ("overflow"), .oid_handler = (
sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Number of signals overflew"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue_overflow
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_sigqueue_overflow); _Static_assert
((((0x80000000) & 0xf) == 0 || ((0x80000000) & 0) == 2
) && sizeof(int) == sizeof(*(&signal_overflow)), "compile-time assertion failed"
)
;
148
149static int signal_alloc_fail = 0;
150SYSCTL_INT(_kern_sigqueue, OID_AUTO, alloc_fail, CTLFLAG_RD,static struct sysctl_oid sysctl___kern_sigqueue_alloc_fail = {
.oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children
)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | (0x80000000)), .oid_arg1 = (&signal_alloc_fail
), .oid_arg2 = (0), .oid_name = ("alloc_fail"), .oid_handler =
(sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "signals failed to be allocated"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue_alloc_fail
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_sigqueue_alloc_fail); _Static_assert
((((0x80000000) & 0xf) == 0 || ((0x80000000) & 0) == 2
) && sizeof(int) == sizeof(*(&signal_alloc_fail))
, "compile-time assertion failed")
151 &signal_alloc_fail, 0, "signals failed to be allocated")static struct sysctl_oid sysctl___kern_sigqueue_alloc_fail = {
.oid_parent = ((&(&sysctl___kern_sigqueue)->oid_children
)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | (0x80000000)), .oid_arg1 = (&signal_alloc_fail
), .oid_arg2 = (0), .oid_name = ("alloc_fail"), .oid_handler =
(sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "signals failed to be allocated"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_sigqueue_alloc_fail
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_sigqueue_alloc_fail); _Static_assert
((((0x80000000) & 0xf) == 0 || ((0x80000000) & 0) == 2
) && sizeof(int) == sizeof(*(&signal_alloc_fail))
, "compile-time assertion failed")
;
152
153SYSINIT(signal, SI_SUB_P1003_1B, SI_ORDER_FIRST+3, sigqueue_start, NULL)static struct sysinit signal_sys_init = { SI_SUB_P1003_1B, SI_ORDER_FIRST
+3, (sysinit_cfunc_t)(sysinit_nfunc_t)sigqueue_start, ((void *
)(((void *)0))) }; __asm__(".globl " "__start_set_sysinit_set"
); __asm__(".globl " "__stop_set_sysinit_set"); static void const
* const __set_sysinit_set_sym_signal_sys_init __attribute__(
(__section__("set_" "sysinit_set"))) __attribute__((__used__)
) = &(signal_sys_init)
;
154
155/*
156 * Policy -- Can ucred cr1 send SIGIO to process cr2?
157 * Should use cr_cansignal() once cr_cansignal() allows SIGIO and SIGURG
158 * in the right situations.
159 */
160#define CANSIGIO(cr1, cr2)((cr1)->cr_uid == 0 || (cr1)->cr_ruid == (cr2)->cr_ruid
|| (cr1)->cr_uid == (cr2)->cr_ruid || (cr1)->cr_ruid
== (cr2)->cr_uid || (cr1)->cr_uid == (cr2)->cr_uid)
\
161 ((cr1)->cr_uid == 0 || \
162 (cr1)->cr_ruid == (cr2)->cr_ruid || \
163 (cr1)->cr_uid == (cr2)->cr_ruid || \
164 (cr1)->cr_ruid == (cr2)->cr_uid || \
165 (cr1)->cr_uid == (cr2)->cr_uid)
166
167static int sugid_coredump;
168SYSCTL_INT(_kern, OID_AUTO, sugid_coredump, CTLFLAG_RWTUN,static struct sysctl_oid sysctl___kern_sugid_coredump = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000
| (((0x80000000|0x40000000)|0x00080000))), .oid_arg1 = (&
sugid_coredump), .oid_arg2 = (0), .oid_name = ("sugid_coredump"
), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr
= "Allow setuid and setgid processes to dump core" }; __asm__
(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"
); static void const * const __set_sysctl_set_sym_sysctl___kern_sugid_coredump
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_sugid_coredump); _Static_assert
((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || (
(((0x80000000|0x40000000)|0x00080000)) & 0) == 2) &&
sizeof(int) == sizeof(*(&sugid_coredump)), "compile-time assertion failed"
)
169 &sugid_coredump, 0, "Allow setuid and setgid processes to dump core")static struct sysctl_oid sysctl___kern_sugid_coredump = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000
| (((0x80000000|0x40000000)|0x00080000))), .oid_arg1 = (&
sugid_coredump), .oid_arg2 = (0), .oid_name = ("sugid_coredump"
), .oid_handler = (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr
= "Allow setuid and setgid processes to dump core" }; __asm__
(".globl " "__start_set_sysctl_set"); __asm__(".globl " "__stop_set_sysctl_set"
); static void const * const __set_sysctl_set_sym_sysctl___kern_sugid_coredump
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_sugid_coredump); _Static_assert
((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || (
(((0x80000000|0x40000000)|0x00080000)) & 0) == 2) &&
sizeof(int) == sizeof(*(&sugid_coredump)), "compile-time assertion failed"
)
;
170
171static int capmode_coredump;
172SYSCTL_INT(_kern, OID_AUTO, capmode_coredump, CTLFLAG_RWTUN,static struct sysctl_oid sysctl___kern_capmode_coredump = { .
oid_parent = ((&(&sysctl___kern)->oid_children)), .
oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))),
.oid_arg1 = (&capmode_coredump), .oid_arg2 = (0), .oid_name
= ("capmode_coredump"), .oid_handler = (sysctl_handle_int), .
oid_fmt = ("I"), .oid_descr = "Allow processes in capability mode to dump core"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_capmode_coredump
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_capmode_coredump); _Static_assert
((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || (
(((0x80000000|0x40000000)|0x00080000)) & 0) == 2) &&
sizeof(int) == sizeof(*(&capmode_coredump)), "compile-time assertion failed"
)
173 &capmode_coredump, 0, "Allow processes in capability mode to dump core")static struct sysctl_oid sysctl___kern_capmode_coredump = { .
oid_parent = ((&(&sysctl___kern)->oid_children)), .
oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))),
.oid_arg1 = (&capmode_coredump), .oid_arg2 = (0), .oid_name
= ("capmode_coredump"), .oid_handler = (sysctl_handle_int), .
oid_fmt = ("I"), .oid_descr = "Allow processes in capability mode to dump core"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_capmode_coredump
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_capmode_coredump); _Static_assert
((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || (
(((0x80000000|0x40000000)|0x00080000)) & 0) == 2) &&
sizeof(int) == sizeof(*(&capmode_coredump)), "compile-time assertion failed"
)
;
174
175static int do_coredump = 1;
176SYSCTL_INT(_kern, OID_AUTO, coredump, CTLFLAG_RW,static struct sysctl_oid sysctl___kern_coredump = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000
| ((0x80000000|0x40000000))), .oid_arg1 = (&do_coredump)
, .oid_arg2 = (0), .oid_name = ("coredump"), .oid_handler = (
sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Enable/Disable coredumps"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_coredump
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_coredump); _Static_assert(
((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000|
0x40000000)) & 0) == 2) && sizeof(int) == sizeof(
*(&do_coredump)), "compile-time assertion failed")
177 &do_coredump, 0, "Enable/Disable coredumps")static struct sysctl_oid sysctl___kern_coredump = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000
| ((0x80000000|0x40000000))), .oid_arg1 = (&do_coredump)
, .oid_arg2 = (0), .oid_name = ("coredump"), .oid_handler = (
sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Enable/Disable coredumps"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_coredump
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_coredump); _Static_assert(
((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000|
0x40000000)) & 0) == 2) && sizeof(int) == sizeof(
*(&do_coredump)), "compile-time assertion failed")
;
178
179static int set_core_nodump_flag = 0;
180SYSCTL_INT(_kern, OID_AUTO, nodump_coredump, CTLFLAG_RW, &set_core_nodump_flag,static struct sysctl_oid sysctl___kern_nodump_coredump = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000
| ((0x80000000|0x40000000))), .oid_arg1 = (&set_core_nodump_flag
), .oid_arg2 = (0), .oid_name = ("nodump_coredump"), .oid_handler
= (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Enable setting the NODUMP flag on coredump files"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_nodump_coredump
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_nodump_coredump); _Static_assert
(((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000
|0x40000000)) & 0) == 2) && sizeof(int) == sizeof
(*(&set_core_nodump_flag)), "compile-time assertion failed"
)
181 0, "Enable setting the NODUMP flag on coredump files")static struct sysctl_oid sysctl___kern_nodump_coredump = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000
| ((0x80000000|0x40000000))), .oid_arg1 = (&set_core_nodump_flag
), .oid_arg2 = (0), .oid_name = ("nodump_coredump"), .oid_handler
= (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Enable setting the NODUMP flag on coredump files"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_nodump_coredump
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_nodump_coredump); _Static_assert
(((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000
|0x40000000)) & 0) == 2) && sizeof(int) == sizeof
(*(&set_core_nodump_flag)), "compile-time assertion failed"
)
;
182
183static int coredump_devctl = 0;
184SYSCTL_INT(_kern, OID_AUTO, coredump_devctl, CTLFLAG_RW, &coredump_devctl,static struct sysctl_oid sysctl___kern_coredump_devctl = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000
| ((0x80000000|0x40000000))), .oid_arg1 = (&coredump_devctl
), .oid_arg2 = (0), .oid_name = ("coredump_devctl"), .oid_handler
= (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Generate a devctl notification when processes coredump"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_coredump_devctl
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_coredump_devctl); _Static_assert
(((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000
|0x40000000)) & 0) == 2) && sizeof(int) == sizeof
(*(&coredump_devctl)), "compile-time assertion failed")
185 0, "Generate a devctl notification when processes coredump")static struct sysctl_oid sysctl___kern_coredump_devctl = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = (2 | 0x00040000
| ((0x80000000|0x40000000))), .oid_arg1 = (&coredump_devctl
), .oid_arg2 = (0), .oid_name = ("coredump_devctl"), .oid_handler
= (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Generate a devctl notification when processes coredump"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_coredump_devctl
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_coredump_devctl); _Static_assert
(((((0x80000000|0x40000000)) & 0xf) == 0 || (((0x80000000
|0x40000000)) & 0) == 2) && sizeof(int) == sizeof
(*(&coredump_devctl)), "compile-time assertion failed")
;
186
187/*
188 * Signal properties and actions.
189 * The array below categorizes the signals and their default actions
190 * according to the following properties:
191 */
192#define SA_KILL0x01 0x01 /* terminates process by default */
193#define SA_CORE0x02 0x02 /* ditto and coredumps */
194#define SA_STOP0x04 0x04 /* suspend process */
195#define SA_TTYSTOP0x08 0x08 /* ditto, from tty */
196#define SA_IGNORE0x10 0x10 /* ignore by default */
197#define SA_CONT0x20 0x20 /* continue if suspended */
198#define SA_CANTMASK0x40 0x40 /* non-maskable, catchable */
199
200static int sigproptbl[NSIG32] = {
201 SA_KILL0x01, /* SIGHUP */
202 SA_KILL0x01, /* SIGINT */
203 SA_KILL0x01|SA_CORE0x02, /* SIGQUIT */
204 SA_KILL0x01|SA_CORE0x02, /* SIGILL */
205 SA_KILL0x01|SA_CORE0x02, /* SIGTRAP */
206 SA_KILL0x01|SA_CORE0x02, /* SIGABRT */
207 SA_KILL0x01|SA_CORE0x02, /* SIGEMT */
208 SA_KILL0x01|SA_CORE0x02, /* SIGFPE */
209 SA_KILL0x01, /* SIGKILL */
210 SA_KILL0x01|SA_CORE0x02, /* SIGBUS */
211 SA_KILL0x01|SA_CORE0x02, /* SIGSEGV */
212 SA_KILL0x01|SA_CORE0x02, /* SIGSYS */
213 SA_KILL0x01, /* SIGPIPE */
214 SA_KILL0x01, /* SIGALRM */
215 SA_KILL0x01, /* SIGTERM */
216 SA_IGNORE0x10, /* SIGURG */
217 SA_STOP0x04, /* SIGSTOP */
218 SA_STOP0x04|SA_TTYSTOP0x08, /* SIGTSTP */
219 SA_IGNORE0x10|SA_CONT0x20, /* SIGCONT */
220 SA_IGNORE0x10, /* SIGCHLD */
221 SA_STOP0x04|SA_TTYSTOP0x08, /* SIGTTIN */
222 SA_STOP0x04|SA_TTYSTOP0x08, /* SIGTTOU */
223 SA_IGNORE0x10, /* SIGIO */
224 SA_KILL0x01, /* SIGXCPU */
225 SA_KILL0x01, /* SIGXFSZ */
226 SA_KILL0x01, /* SIGVTALRM */
227 SA_KILL0x01, /* SIGPROF */
228 SA_IGNORE0x10, /* SIGWINCH */
229 SA_IGNORE0x10, /* SIGINFO */
230 SA_KILL0x01, /* SIGUSR1 */
231 SA_KILL0x01, /* SIGUSR2 */
232};
233
234static void reschedule_signals(struct proc *p, sigset_t block, int flags);
235
236static void
237sigqueue_start(void)
238{
239 ksiginfo_zone = uma_zcreate("ksiginfo", sizeof(ksiginfo_t),
240 NULL((void *)0), NULL((void *)0), NULL((void *)0), NULL((void *)0), UMA_ALIGN_PTR(sizeof(void *) - 1), 0);
241 uma_prealloc(ksiginfo_zone, preallocate_siginfo);
242 p31b_setcfg(CTL_P1003_1B_REALTIME_SIGNALS9, _POSIX_REALTIME_SIGNALS200112L);
243 p31b_setcfg(CTL_P1003_1B_RTSIG_MAX21, SIGRTMAX126 - SIGRTMIN65 + 1);
244 p31b_setcfg(CTL_P1003_1B_SIGQUEUE_MAX24, max_pending_per_proc);
245}
246
247ksiginfo_t *
248ksiginfo_alloc(int wait)
249{
250 int flags;
251
252 flags = M_ZERO0x0100;
253 if (! wait)
254 flags |= M_NOWAIT0x0001;
255 if (ksiginfo_zone != NULL((void *)0))
256 return ((ksiginfo_t *)uma_zalloc(ksiginfo_zone, flags));
257 return (NULL((void *)0));
258}
259
260void
261ksiginfo_free(ksiginfo_t *ksi)
262{
263 uma_zfree(ksiginfo_zone, ksi);
264}
265
266static __inline int
267ksiginfo_tryfree(ksiginfo_t *ksi)
268{
269 if (!(ksi->ksi_flags & KSI_EXT0x02)) {
270 uma_zfree(ksiginfo_zone, ksi);
271 return (1);
272 }
273 return (0);
274}
275
276void
277sigqueue_init(sigqueue_t *list, struct proc *p)
278{
279 SIGEMPTYSET(list->sq_signals)do { int __i; for (__i = 0; __i < 4; __i++) (list->sq_signals
).__bits[__i] = 0; } while (0)
;
280 SIGEMPTYSET(list->sq_kill)do { int __i; for (__i = 0; __i < 4; __i++) (list->sq_kill
).__bits[__i] = 0; } while (0)
;
281 TAILQ_INIT(&list->sq_list)do { (((&list->sq_list))->tqh_first) = ((void *)0);
(&list->sq_list)->tqh_last = &(((&list->
sq_list))->tqh_first); ; } while (0)
;
282 list->sq_proc = p;
283 list->sq_flags = SQ_INIT0x01;
284}
285
286/*
287 * Get a signal's ksiginfo.
288 * Return:
289 * 0 - signal not found
290 * others - signal number
291 */
292static int
293sigqueue_get(sigqueue_t *sq, int signo, ksiginfo_t *si)
294{
295 struct proc *p = sq->sq_proc;
296 struct ksiginfo *ksi, *next;
297 int count = 0;
298
299 KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"))do { } while (0);
300
301 if (!SIGISMEMBER(sq->sq_signals, signo)((sq->sq_signals).__bits[(((signo) - 1) >> 5)] &
(1 << (((signo) - 1) & 31)))
)
302 return (0);
303
304 if (SIGISMEMBER(sq->sq_kill, signo)((sq->sq_kill).__bits[(((signo) - 1) >> 5)] & (1
<< (((signo) - 1) & 31)))
) {
305 count++;
306 SIGDELSET(sq->sq_kill, signo)((sq->sq_kill).__bits[(((signo) - 1) >> 5)] &= ~
(1 << (((signo) - 1) & 31)))
;
307 }
308
309 TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next)for ((ksi) = (((&sq->sq_list))->tqh_first); (ksi) &&
((next) = (((ksi))->ksi_link.tqe_next), 1); (ksi) = (next
))
{
310 if (ksi->ksi_signoksi_info.si_signo == signo) {
311 if (count == 0) {
312 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link)do { ; ; ; ; if (((((ksi))->ksi_link.tqe_next)) != ((void *
)0)) (((ksi))->ksi_link.tqe_next)->ksi_link.tqe_prev = (
ksi)->ksi_link.tqe_prev; else { (&sq->sq_list)->
tqh_last = (ksi)->ksi_link.tqe_prev; ; } *(ksi)->ksi_link
.tqe_prev = (((ksi))->ksi_link.tqe_next); ; ; ; } while (0
)
;
313 ksi->ksi_sigq = NULL((void *)0);
314 ksiginfo_copy(ksi, si);
315 if (ksiginfo_tryfree(ksi) && p != NULL((void *)0))
316 p->p_pendingcnt--;
317 }
318 if (++count > 1)
319 break;
320 }
321 }
322
323 if (count <= 1)
324 SIGDELSET(sq->sq_signals, signo)((sq->sq_signals).__bits[(((signo) - 1) >> 5)] &=
~(1 << (((signo) - 1) & 31)))
;
325 si->ksi_signoksi_info.si_signo = signo;
326 return (signo);
327}
328
329void
330sigqueue_take(ksiginfo_t *ksi)
331{
332 struct ksiginfo *kp;
333 struct proc *p;
334 sigqueue_t *sq;
335
336 if (ksi == NULL((void *)0) || (sq = ksi->ksi_sigq) == NULL((void *)0))
337 return;
338
339 p = sq->sq_proc;
340 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link)do { ; ; ; ; if (((((ksi))->ksi_link.tqe_next)) != ((void *
)0)) (((ksi))->ksi_link.tqe_next)->ksi_link.tqe_prev = (
ksi)->ksi_link.tqe_prev; else { (&sq->sq_list)->
tqh_last = (ksi)->ksi_link.tqe_prev; ; } *(ksi)->ksi_link
.tqe_prev = (((ksi))->ksi_link.tqe_next); ; ; ; } while (0
)
;
341 ksi->ksi_sigq = NULL((void *)0);
342 if (!(ksi->ksi_flags & KSI_EXT0x02) && p != NULL((void *)0))
343 p->p_pendingcnt--;
344
345 for (kp = TAILQ_FIRST(&sq->sq_list)((&sq->sq_list)->tqh_first); kp != NULL((void *)0);
346 kp = TAILQ_NEXT(kp, ksi_link)((kp)->ksi_link.tqe_next)) {
347 if (kp->ksi_signoksi_info.si_signo == ksi->ksi_signoksi_info.si_signo)
348 break;
349 }
350 if (kp == NULL((void *)0) && !SIGISMEMBER(sq->sq_kill, ksi->ksi_signo)((sq->sq_kill).__bits[(((ksi->ksi_info.si_signo) - 1) >>
5)] & (1 << (((ksi->ksi_info.si_signo) - 1) &
31)))
)
351 SIGDELSET(sq->sq_signals, ksi->ksi_signo)((sq->sq_signals).__bits[(((ksi->ksi_info.si_signo) - 1
) >> 5)] &= ~(1 << (((ksi->ksi_info.si_signo
) - 1) & 31)))
;
352}
353
354static int
355sigqueue_add(sigqueue_t *sq, int signo, ksiginfo_t *si)
356{
357 struct proc *p = sq->sq_proc;
358 struct ksiginfo *ksi;
359 int ret = 0;
360
361 KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"))do { } while (0);
362
363 if (signo == SIGKILL9 || signo == SIGSTOP17 || si == NULL((void *)0)) {
364 SIGADDSET(sq->sq_kill, signo)((sq->sq_kill).__bits[(((signo) - 1) >> 5)] |= (1 <<
(((signo) - 1) & 31)))
;
365 goto out_set_bit;
366 }
367
368 /* directly insert the ksi, don't copy it */
369 if (si->ksi_flags & KSI_INS0x04) {
370 if (si->ksi_flags & KSI_HEAD0x10)
371 TAILQ_INSERT_HEAD(&sq->sq_list, si, ksi_link)do { ; if (((((si))->ksi_link.tqe_next) = (((&sq->sq_list
))->tqh_first)) != ((void *)0)) (((&sq->sq_list))->
tqh_first)->ksi_link.tqe_prev = &(((si))->ksi_link.
tqe_next); else (&sq->sq_list)->tqh_last = &(((
si))->ksi_link.tqe_next); (((&sq->sq_list))->tqh_first
) = (si); (si)->ksi_link.tqe_prev = &(((&sq->sq_list
))->tqh_first); ; ; } while (0)
;
372 else
373 TAILQ_INSERT_TAIL(&sq->sq_list, si, ksi_link)do { ; (((si))->ksi_link.tqe_next) = ((void *)0); (si)->
ksi_link.tqe_prev = (&sq->sq_list)->tqh_last; *(&
sq->sq_list)->tqh_last = (si); (&sq->sq_list)->
tqh_last = &(((si))->ksi_link.tqe_next); ; ; } while (
0)
;
374 si->ksi_sigq = sq;
375 goto out_set_bit;
376 }
377
378 if (__predict_false(ksiginfo_zone == NULL)__builtin_expect((ksiginfo_zone == ((void *)0)), 0)) {
379 SIGADDSET(sq->sq_kill, signo)((sq->sq_kill).__bits[(((signo) - 1) >> 5)] |= (1 <<
(((signo) - 1) & 31)))
;
380 goto out_set_bit;
381 }
382
383 if (p != NULL((void *)0) && p->p_pendingcnt >= max_pending_per_proc) {
384 signal_overflow++;
385 ret = EAGAIN35;
386 } else if ((ksi = ksiginfo_alloc(0)) == NULL((void *)0)) {
387 signal_alloc_fail++;
388 ret = EAGAIN35;
389 } else {
390 if (p != NULL((void *)0))
391 p->p_pendingcnt++;
392 ksiginfo_copy(si, ksi);
393 ksi->ksi_signoksi_info.si_signo = signo;
394 if (si->ksi_flags & KSI_HEAD0x10)
395 TAILQ_INSERT_HEAD(&sq->sq_list, ksi, ksi_link)do { ; if (((((ksi))->ksi_link.tqe_next) = (((&sq->
sq_list))->tqh_first)) != ((void *)0)) (((&sq->sq_list
))->tqh_first)->ksi_link.tqe_prev = &(((ksi))->ksi_link
.tqe_next); else (&sq->sq_list)->tqh_last = &((
(ksi))->ksi_link.tqe_next); (((&sq->sq_list))->tqh_first
) = (ksi); (ksi)->ksi_link.tqe_prev = &(((&sq->
sq_list))->tqh_first); ; ; } while (0)
;
396 else
397 TAILQ_INSERT_TAIL(&sq->sq_list, ksi, ksi_link)do { ; (((ksi))->ksi_link.tqe_next) = ((void *)0); (ksi)->
ksi_link.tqe_prev = (&sq->sq_list)->tqh_last; *(&
sq->sq_list)->tqh_last = (ksi); (&sq->sq_list)->
tqh_last = &(((ksi))->ksi_link.tqe_next); ; ; } while (
0)
;
398 ksi->ksi_sigq = sq;
399 }
400
401 if ((si->ksi_flags & KSI_TRAP0x01) != 0 ||
402 (si->ksi_flags & KSI_SIGQ0x08) == 0) {
403 if (ret != 0)
404 SIGADDSET(sq->sq_kill, signo)((sq->sq_kill).__bits[(((signo) - 1) >> 5)] |= (1 <<
(((signo) - 1) & 31)))
;
405 ret = 0;
406 goto out_set_bit;
407 }
408
409 if (ret != 0)
410 return (ret);
411
412out_set_bit:
413 SIGADDSET(sq->sq_signals, signo)((sq->sq_signals).__bits[(((signo) - 1) >> 5)] |= (1
<< (((signo) - 1) & 31)))
;
414 return (ret);
415}
416
417void
418sigqueue_flush(sigqueue_t *sq)
419{
420 struct proc *p = sq->sq_proc;
421 ksiginfo_t *ksi;
422
423 KASSERT(sq->sq_flags & SQ_INIT, ("sigqueue not inited"))do { } while (0);
424
425 if (p != NULL((void *)0))
426 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
427
428 while ((ksi = TAILQ_FIRST(&sq->sq_list)((&sq->sq_list)->tqh_first)) != NULL((void *)0)) {
429 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link)do { ; ; ; ; if (((((ksi))->ksi_link.tqe_next)) != ((void *
)0)) (((ksi))->ksi_link.tqe_next)->ksi_link.tqe_prev = (
ksi)->ksi_link.tqe_prev; else { (&sq->sq_list)->
tqh_last = (ksi)->ksi_link.tqe_prev; ; } *(ksi)->ksi_link
.tqe_prev = (((ksi))->ksi_link.tqe_next); ; ; ; } while (0
)
;
430 ksi->ksi_sigq = NULL((void *)0);
431 if (ksiginfo_tryfree(ksi) && p != NULL((void *)0))
432 p->p_pendingcnt--;
433 }
434
435 SIGEMPTYSET(sq->sq_signals)do { int __i; for (__i = 0; __i < 4; __i++) (sq->sq_signals
).__bits[__i] = 0; } while (0)
;
436 SIGEMPTYSET(sq->sq_kill)do { int __i; for (__i = 0; __i < 4; __i++) (sq->sq_kill
).__bits[__i] = 0; } while (0)
;
437}
438
439static void
440sigqueue_move_set(sigqueue_t *src, sigqueue_t *dst, const sigset_t *set)
441{
442 sigset_t tmp;
443 struct proc *p1, *p2;
444 ksiginfo_t *ksi, *next;
445
446 KASSERT(src->sq_flags & SQ_INIT, ("src sigqueue not inited"))do { } while (0);
447 KASSERT(dst->sq_flags & SQ_INIT, ("dst sigqueue not inited"))do { } while (0);
448 p1 = src->sq_proc;
449 p2 = dst->sq_proc;
450 /* Move siginfo to target list */
451 TAILQ_FOREACH_SAFE(ksi, &src->sq_list, ksi_link, next)for ((ksi) = (((&src->sq_list))->tqh_first); (ksi) &&
((next) = (((ksi))->ksi_link.tqe_next), 1); (ksi) = (next
))
{
452 if (SIGISMEMBER(*set, ksi->ksi_signo)((*set).__bits[(((ksi->ksi_info.si_signo) - 1) >> 5)
] & (1 << (((ksi->ksi_info.si_signo) - 1) & 31
)))
) {
453 TAILQ_REMOVE(&src->sq_list, ksi, ksi_link)do { ; ; ; ; if (((((ksi))->ksi_link.tqe_next)) != ((void *
)0)) (((ksi))->ksi_link.tqe_next)->ksi_link.tqe_prev = (
ksi)->ksi_link.tqe_prev; else { (&src->sq_list)->
tqh_last = (ksi)->ksi_link.tqe_prev; ; } *(ksi)->ksi_link
.tqe_prev = (((ksi))->ksi_link.tqe_next); ; ; ; } while (0
)
;
454 if (p1 != NULL((void *)0))
455 p1->p_pendingcnt--;
456 TAILQ_INSERT_TAIL(&dst->sq_list, ksi, ksi_link)do { ; (((ksi))->ksi_link.tqe_next) = ((void *)0); (ksi)->
ksi_link.tqe_prev = (&dst->sq_list)->tqh_last; *(&
dst->sq_list)->tqh_last = (ksi); (&dst->sq_list)
->tqh_last = &(((ksi))->ksi_link.tqe_next); ; ; } while
(0)
;
457 ksi->ksi_sigq = dst;
458 if (p2 != NULL((void *)0))
459 p2->p_pendingcnt++;
460 }
461 }
462
463 /* Move pending bits to target list */
464 tmp = src->sq_kill;
465 SIGSETAND(tmp, *set)do { int __i; for (__i = 0; __i < 4; __i++) (tmp).__bits[__i
] &= (*set).__bits[__i]; } while (0)
;
466 SIGSETOR(dst->sq_kill, tmp)do { int __i; for (__i = 0; __i < 4; __i++) (dst->sq_kill
).__bits[__i] |= (tmp).__bits[__i]; } while (0)
;
467 SIGSETNAND(src->sq_kill, tmp)do { int __i; for (__i = 0; __i < 4; __i++) (src->sq_kill
).__bits[__i] &= ~(tmp).__bits[__i]; } while (0)
;
468
469 tmp = src->sq_signals;
470 SIGSETAND(tmp, *set)do { int __i; for (__i = 0; __i < 4; __i++) (tmp).__bits[__i
] &= (*set).__bits[__i]; } while (0)
;
471 SIGSETOR(dst->sq_signals, tmp)do { int __i; for (__i = 0; __i < 4; __i++) (dst->sq_signals
).__bits[__i] |= (tmp).__bits[__i]; } while (0)
;
472 SIGSETNAND(src->sq_signals, tmp)do { int __i; for (__i = 0; __i < 4; __i++) (src->sq_signals
).__bits[__i] &= ~(tmp).__bits[__i]; } while (0)
;
473}
474
475#if 0
476static void
477sigqueue_move(sigqueue_t *src, sigqueue_t *dst, int signo)
478{
479 sigset_t set;
480
481 SIGEMPTYSET(set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i
] = 0; } while (0)
;
482 SIGADDSET(set, signo)((set).__bits[(((signo) - 1) >> 5)] |= (1 << (((signo
) - 1) & 31)))
;
483 sigqueue_move_set(src, dst, &set);
484}
485#endif
486
487static void
488sigqueue_delete_set(sigqueue_t *sq, const sigset_t *set)
489{
490 struct proc *p = sq->sq_proc;
491 ksiginfo_t *ksi, *next;
492
493 KASSERT(sq->sq_flags & SQ_INIT, ("src sigqueue not inited"))do { } while (0);
494
495 /* Remove siginfo queue */
496 TAILQ_FOREACH_SAFE(ksi, &sq->sq_list, ksi_link, next)for ((ksi) = (((&sq->sq_list))->tqh_first); (ksi) &&
((next) = (((ksi))->ksi_link.tqe_next), 1); (ksi) = (next
))
{
497 if (SIGISMEMBER(*set, ksi->ksi_signo)((*set).__bits[(((ksi->ksi_info.si_signo) - 1) >> 5)
] & (1 << (((ksi->ksi_info.si_signo) - 1) & 31
)))
) {
498 TAILQ_REMOVE(&sq->sq_list, ksi, ksi_link)do { ; ; ; ; if (((((ksi))->ksi_link.tqe_next)) != ((void *
)0)) (((ksi))->ksi_link.tqe_next)->ksi_link.tqe_prev = (
ksi)->ksi_link.tqe_prev; else { (&sq->sq_list)->
tqh_last = (ksi)->ksi_link.tqe_prev; ; } *(ksi)->ksi_link
.tqe_prev = (((ksi))->ksi_link.tqe_next); ; ; ; } while (0
)
;
499 ksi->ksi_sigq = NULL((void *)0);
500 if (ksiginfo_tryfree(ksi) && p != NULL((void *)0))
501 p->p_pendingcnt--;
502 }
503 }
504 SIGSETNAND(sq->sq_kill, *set)do { int __i; for (__i = 0; __i < 4; __i++) (sq->sq_kill
).__bits[__i] &= ~(*set).__bits[__i]; } while (0)
;
505 SIGSETNAND(sq->sq_signals, *set)do { int __i; for (__i = 0; __i < 4; __i++) (sq->sq_signals
).__bits[__i] &= ~(*set).__bits[__i]; } while (0)
;
506}
507
508void
509sigqueue_delete(sigqueue_t *sq, int signo)
510{
511 sigset_t set;
512
513 SIGEMPTYSET(set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i
] = 0; } while (0)
;
514 SIGADDSET(set, signo)((set).__bits[(((signo) - 1) >> 5)] |= (1 << (((signo
) - 1) & 31)))
;
515 sigqueue_delete_set(sq, &set);
516}
517
518/* Remove a set of signals for a process */
519static void
520sigqueue_delete_set_proc(struct proc *p, const sigset_t *set)
521{
522 sigqueue_t worklist;
523 struct thread *td0;
524
525 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
526
527 sigqueue_init(&worklist, NULL((void *)0));
528 sigqueue_move_set(&p->p_sigqueue, &worklist, set);
529
530 FOREACH_THREAD_IN_PROC(p, td0)for (((td0)) = (((&(p)->p_threads))->tqh_first); ((
td0)); ((td0)) = ((((td0)))->td_plist.tqe_next))
531 sigqueue_move_set(&td0->td_sigqueue, &worklist, set);
532
533 sigqueue_flush(&worklist);
534}
535
536void
537sigqueue_delete_proc(struct proc *p, int signo)
538{
539 sigset_t set;
540
541 SIGEMPTYSET(set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i
] = 0; } while (0)
;
542 SIGADDSET(set, signo)((set).__bits[(((signo) - 1) >> 5)] |= (1 << (((signo
) - 1) & 31)))
;
543 sigqueue_delete_set_proc(p, &set);
544}
545
546static void
547sigqueue_delete_stopmask_proc(struct proc *p)
548{
549 sigset_t set;
550
551 SIGEMPTYSET(set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i
] = 0; } while (0)
;
552 SIGADDSET(set, SIGSTOP)((set).__bits[(((17) - 1) >> 5)] |= (1 << (((17) -
1) & 31)))
;
553 SIGADDSET(set, SIGTSTP)((set).__bits[(((18) - 1) >> 5)] |= (1 << (((18) -
1) & 31)))
;
554 SIGADDSET(set, SIGTTIN)((set).__bits[(((21) - 1) >> 5)] |= (1 << (((21) -
1) & 31)))
;
555 SIGADDSET(set, SIGTTOU)((set).__bits[(((22) - 1) >> 5)] |= (1 << (((22) -
1) & 31)))
;
556 sigqueue_delete_set_proc(p, &set);
557}
558
559/*
560 * Determine signal that should be delivered to thread td, the current
561 * thread, 0 if none. If there is a pending stop signal with default
562 * action, the process stops in issignal().
563 */
564int
565cursig(struct thread *td)
566{
567 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED)(void)0;
568 mtx_assert(&td->td_proc->p_sigacts->ps_mtx, MA_OWNED)(void)0;
569 THREAD_LOCK_ASSERT(td, MA_NOTOWNED)do { struct mtx *__m = (td)->td_lock; if (__m != &blocked_lock
) (void)0; } while (0)
;
570 return (SIGPENDING(td)((!(__sigisempty(&((td)->td_sigqueue.sq_signals))) &&
!sigsetmasked(&(td)->td_sigqueue.sq_signals, &(td
)->td_sigmask)) || (!(__sigisempty(&((td)->td_proc->
p_sigqueue.sq_signals))) && !sigsetmasked(&(td)->
td_proc->p_sigqueue.sq_signals, &(td)->td_sigmask))
)
? issignal(td) : 0);
571}
572
573/*
574 * Arrange for ast() to handle unmasked pending signals on return to user
575 * mode. This must be called whenever a signal is added to td_sigqueue or
576 * unmasked in td_sigmask.
577 */
578void
579signotify(struct thread *td)
580{
581 struct proc *p;
582
583 p = td->td_proc;
584
585 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
586
587 if (SIGPENDING(td)((!(__sigisempty(&((td)->td_sigqueue.sq_signals))) &&
!sigsetmasked(&(td)->td_sigqueue.sq_signals, &(td
)->td_sigmask)) || (!(__sigisempty(&((td)->td_proc->
p_sigqueue.sq_signals))) && !sigsetmasked(&(td)->
td_proc->p_sigqueue.sq_signals, &(td)->td_sigmask))
)
) {
588 thread_lock(td)thread_lock_flags_((td), 0, "/usr/src/sys/kern/kern_sig.c", 588
)
;
589 td->td_flags |= TDF_NEEDSIGCHK0x00020000 | TDF_ASTPENDING0x00000800;
590 thread_unlock(td)do { if ((((((((td)->td_lock)))))->lock_object.lo_data !=
0)) (((((td)->td_lock))))->lock_object.lo_data--; else
{ do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) ((((td)->td_lock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&((((((td)->td_lock)))))->mtx_lock
, 0x00000004); } spinlock_exit(); } while (0)
;
591 }
592}
593
594int
595sigonstack(size_t sp)
596{
597 struct thread *td = curthread(__curthread());
598
599 return ((td->td_pflags & TDP_ALTSTACK0x00000020) ?
600#if defined(COMPAT_43)
601 ((td->td_sigstk.ss_size == 0) ?
602 (td->td_sigstk.ss_flags & SS_ONSTACK0x0001) :
603 ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size))
604#else
605 ((sp - (size_t)td->td_sigstk.ss_sp) < td->td_sigstk.ss_size)
606#endif
607 : 0);
608}
609
610static __inline int
611sigprop(int sig)
612{
613
614 if (sig > 0 && sig < NSIG32)
615 return (sigproptbl[_SIG_IDX(sig)((sig) - 1)]);
616 return (0);
617}
618
619int
620sig_ffs(sigset_t *set)
621{
622 int i;
623
624 for (i = 0; i < _SIG_WORDS4; i++)
625 if (set->__bits[i])
626 return (ffs(set->__bits[i])__builtin_ffs(set->__bits[i]) + (i * 32));
627 return (0);
628}
629
630static bool
631sigact_flag_test(const struct sigaction *act, int flag)
632{
633
634 /*
635 * SA_SIGINFO is reset when signal disposition is set to
636 * ignore or default. Other flags are kept according to user
637 * settings.
638 */
639 return ((act->sa_flags & flag) != 0 && (flag != SA_SIGINFO0x0040 ||
640 ((__sighandler_t *)act->sa_sigaction__sigaction_u.__sa_sigaction != SIG_IGN((__sighandler_t *)1) &&
641 (__sighandler_t *)act->sa_sigaction__sigaction_u.__sa_sigaction != SIG_DFL((__sighandler_t *)0))));
642}
643
644/*
645 * kern_sigaction
646 * sigaction
647 * freebsd4_sigaction
648 * osigaction
649 */
650int
651kern_sigaction(struct thread *td, int sig, const struct sigaction *act,
652 struct sigaction *oact, int flags)
653{
654 struct sigacts *ps;
655 struct proc *p = td->td_proc;
656
657 if (!_SIG_VALID(sig)((sig) <= 128 && (sig) > 0))
658 return (EINVAL22);
659 if (act != NULL((void *)0) && act->sa_handler__sigaction_u.__sa_handler != SIG_DFL((__sighandler_t *)0) &&
660 act->sa_handler__sigaction_u.__sa_handler != SIG_IGN((__sighandler_t *)1) && (act->sa_flags & ~(SA_ONSTACK0x0001 |
661 SA_RESTART0x0002 | SA_RESETHAND0x0004 | SA_NOCLDSTOP0x0008 | SA_NODEFER0x0010 |
662 SA_NOCLDWAIT0x0020 | SA_SIGINFO0x0040)) != 0)
663 return (EINVAL22);
664
665 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
666 ps = p->p_sigacts;
667 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
668 if (oact) {
669 oact->sa_mask = ps->ps_catchmask[_SIG_IDX(sig)((sig) - 1)];
670 oact->sa_flags = 0;
671 if (SIGISMEMBER(ps->ps_sigonstack, sig)((ps->ps_sigonstack).__bits[(((sig) - 1) >> 5)] &
(1 << (((sig) - 1) & 31)))
)
672 oact->sa_flags |= SA_ONSTACK0x0001;
673 if (!SIGISMEMBER(ps->ps_sigintr, sig)((ps->ps_sigintr).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
)
674 oact->sa_flags |= SA_RESTART0x0002;
675 if (SIGISMEMBER(ps->ps_sigreset, sig)((ps->ps_sigreset).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
)
676 oact->sa_flags |= SA_RESETHAND0x0004;
677 if (SIGISMEMBER(ps->ps_signodefer, sig)((ps->ps_signodefer).__bits[(((sig) - 1) >> 5)] &
(1 << (((sig) - 1) & 31)))
)
678 oact->sa_flags |= SA_NODEFER0x0010;
679 if (SIGISMEMBER(ps->ps_siginfo, sig)((ps->ps_siginfo).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
) {
680 oact->sa_flags |= SA_SIGINFO0x0040;
681 oact->sa_sigaction__sigaction_u.__sa_sigaction =
682 (__siginfohandler_t *)ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)];
683 } else
684 oact->sa_handler__sigaction_u.__sa_handler = ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)];
685 if (sig == SIGCHLD20 && ps->ps_flag & PS_NOCLDSTOP0x0002)
686 oact->sa_flags |= SA_NOCLDSTOP0x0008;
687 if (sig == SIGCHLD20 && ps->ps_flag & PS_NOCLDWAIT0x0001)
688 oact->sa_flags |= SA_NOCLDWAIT0x0020;
689 }
690 if (act) {
691 if ((sig == SIGKILL9 || sig == SIGSTOP17) &&
692 act->sa_handler__sigaction_u.__sa_handler != SIG_DFL((__sighandler_t *)0)) {
693 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
694 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
695 return (EINVAL22);
696 }
697
698 /*
699 * Change setting atomically.
700 */
701
702 ps->ps_catchmask[_SIG_IDX(sig)((sig) - 1)] = act->sa_mask;
703 SIG_CANTMASK(ps->ps_catchmask[_SIG_IDX(sig)])((ps->ps_catchmask[((sig) - 1)]).__bits[(((9) - 1) >>
5)] &= ~(1 << (((9) - 1) & 31))), ((ps->ps_catchmask
[((sig) - 1)]).__bits[(((17) - 1) >> 5)] &= ~(1 <<
(((17) - 1) & 31)))
;
704 if (sigact_flag_test(act, SA_SIGINFO0x0040)) {
705 ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] =
706 (__sighandler_t *)act->sa_sigaction__sigaction_u.__sa_sigaction;
707 SIGADDSET(ps->ps_siginfo, sig)((ps->ps_siginfo).__bits[(((sig) - 1) >> 5)] |= (1 <<
(((sig) - 1) & 31)))
;
708 } else {
709 ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] = act->sa_handler__sigaction_u.__sa_handler;
710 SIGDELSET(ps->ps_siginfo, sig)((ps->ps_siginfo).__bits[(((sig) - 1) >> 5)] &= ~
(1 << (((sig) - 1) & 31)))
;
711 }
712 if (!sigact_flag_test(act, SA_RESTART0x0002))
713 SIGADDSET(ps->ps_sigintr, sig)((ps->ps_sigintr).__bits[(((sig) - 1) >> 5)] |= (1 <<
(((sig) - 1) & 31)))
;
714 else
715 SIGDELSET(ps->ps_sigintr, sig)((ps->ps_sigintr).__bits[(((sig) - 1) >> 5)] &= ~
(1 << (((sig) - 1) & 31)))
;
716 if (sigact_flag_test(act, SA_ONSTACK0x0001))
717 SIGADDSET(ps->ps_sigonstack, sig)((ps->ps_sigonstack).__bits[(((sig) - 1) >> 5)] |= (
1 << (((sig) - 1) & 31)))
;
718 else
719 SIGDELSET(ps->ps_sigonstack, sig)((ps->ps_sigonstack).__bits[(((sig) - 1) >> 5)] &=
~(1 << (((sig) - 1) & 31)))
;
720 if (sigact_flag_test(act, SA_RESETHAND0x0004))
721 SIGADDSET(ps->ps_sigreset, sig)((ps->ps_sigreset).__bits[(((sig) - 1) >> 5)] |= (1 <<
(((sig) - 1) & 31)))
;
722 else
723 SIGDELSET(ps->ps_sigreset, sig)((ps->ps_sigreset).__bits[(((sig) - 1) >> 5)] &=
~(1 << (((sig) - 1) & 31)))
;
724 if (sigact_flag_test(act, SA_NODEFER0x0010))
725 SIGADDSET(ps->ps_signodefer, sig)((ps->ps_signodefer).__bits[(((sig) - 1) >> 5)] |= (
1 << (((sig) - 1) & 31)))
;
726 else
727 SIGDELSET(ps->ps_signodefer, sig)((ps->ps_signodefer).__bits[(((sig) - 1) >> 5)] &=
~(1 << (((sig) - 1) & 31)))
;
728 if (sig == SIGCHLD20) {
729 if (act->sa_flags & SA_NOCLDSTOP0x0008)
730 ps->ps_flag |= PS_NOCLDSTOP0x0002;
731 else
732 ps->ps_flag &= ~PS_NOCLDSTOP0x0002;
733 if (act->sa_flags & SA_NOCLDWAIT0x0020) {
734 /*
735 * Paranoia: since SA_NOCLDWAIT is implemented
736 * by reparenting the dying child to PID 1 (and
737 * trust it to reap the zombie), PID 1 itself
738 * is forbidden to set SA_NOCLDWAIT.
739 */
740 if (p->p_pid == 1)
741 ps->ps_flag &= ~PS_NOCLDWAIT0x0001;
742 else
743 ps->ps_flag |= PS_NOCLDWAIT0x0001;
744 } else
745 ps->ps_flag &= ~PS_NOCLDWAIT0x0001;
746 if (ps->ps_sigact[_SIG_IDX(SIGCHLD)((20) - 1)] == SIG_IGN((__sighandler_t *)1))
747 ps->ps_flag |= PS_CLDSIGIGN0x0004;
748 else
749 ps->ps_flag &= ~PS_CLDSIGIGN0x0004;
750 }
751 /*
752 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
753 * and for signals set to SIG_DFL where the default is to
754 * ignore. However, don't put SIGCONT in ps_sigignore, as we
755 * have to restart the process.
756 */
757 if (ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_IGN((__sighandler_t *)1) ||
758 (sigprop(sig) & SA_IGNORE0x10 &&
759 ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_DFL((__sighandler_t *)0))) {
760 /* never to be seen again */
761 sigqueue_delete_proc(p, sig);
762 if (sig != SIGCONT19)
763 /* easier in psignal */
764 SIGADDSET(ps->ps_sigignore, sig)((ps->ps_sigignore).__bits[(((sig) - 1) >> 5)] |= (1
<< (((sig) - 1) & 31)))
;
765 SIGDELSET(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] &=
~(1 << (((sig) - 1) & 31)))
;
766 } else {
767 SIGDELSET(ps->ps_sigignore, sig)((ps->ps_sigignore).__bits[(((sig) - 1) >> 5)] &=
~(1 << (((sig) - 1) & 31)))
;
768 if (ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_DFL((__sighandler_t *)0))
769 SIGDELSET(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] &=
~(1 << (((sig) - 1) & 31)))
;
770 else
771 SIGADDSET(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] |= (1 <<
(((sig) - 1) & 31)))
;
772 }
773#ifdef COMPAT_FREEBSD41
774 if (ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_IGN((__sighandler_t *)1) ||
775 ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_DFL((__sighandler_t *)0) ||
776 (flags & KSA_FREEBSD40x0002) == 0)
777 SIGDELSET(ps->ps_freebsd4, sig)((ps->ps_freebsd4).__bits[(((sig) - 1) >> 5)] &=
~(1 << (((sig) - 1) & 31)))
;
778 else
779 SIGADDSET(ps->ps_freebsd4, sig)((ps->ps_freebsd4).__bits[(((sig) - 1) >> 5)] |= (1 <<
(((sig) - 1) & 31)))
;
780#endif
781#ifdef COMPAT_43
782 if (ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_IGN((__sighandler_t *)1) ||
783 ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_DFL((__sighandler_t *)0) ||
784 (flags & KSA_OSIGSET0x0001) == 0)
785 SIGDELSET(ps->ps_osigset, sig)((ps->ps_osigset).__bits[(((sig) - 1) >> 5)] &= ~
(1 << (((sig) - 1) & 31)))
;
786 else
787 SIGADDSET(ps->ps_osigset, sig)((ps->ps_osigset).__bits[(((sig) - 1) >> 5)] |= (1 <<
(((sig) - 1) & 31)))
;
788#endif
789 }
790 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
791 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
792 return (0);
793}
794
795#ifndef _SYS_SYSPROTO_H_
796struct sigaction_args {
797 int sig;
798 struct sigaction *act;
799 struct sigaction *oact;
800};
801#endif
802int
803sys_sigaction(td, uap)
804 struct thread *td;
805 register struct sigaction_args *uap;
806{
807 struct sigaction act, oact;
808 register struct sigaction *actp, *oactp;
809 int error;
810
811 actp = (uap->act != NULL((void *)0)) ? &act : NULL((void *)0);
812 oactp = (uap->oact != NULL((void *)0)) ? &oact : NULL((void *)0);
813 if (actp) {
814 error = copyin(uap->act, actp, sizeof(act));
815 if (error)
816 return (error);
817 }
818 error = kern_sigaction(td, uap->sig, actp, oactp, 0);
819 if (oactp && !error)
820 error = copyout(oactp, uap->oact, sizeof(oact));
821 return (error);
822}
823
824#ifdef COMPAT_FREEBSD41
825#ifndef _SYS_SYSPROTO_H_
826struct freebsd4_sigaction_args {
827 int sig;
828 struct sigaction *act;
829 struct sigaction *oact;
830};
831#endif
832int
833freebsd4_sigaction(td, uap)
834 struct thread *td;
835 register struct freebsd4_sigaction_args *uap;
836{
837 struct sigaction act, oact;
838 register struct sigaction *actp, *oactp;
839 int error;
840
841
842 actp = (uap->act != NULL((void *)0)) ? &act : NULL((void *)0);
1
'?' condition is false
843 oactp = (uap->oact != NULL((void *)0)) ? &oact : NULL((void *)0);
2
'?' condition is true
844 if (actp) {
3
Taking false branch
845 error = copyin(uap->act, actp, sizeof(act));
846 if (error)
847 return (error);
848 }
849 error = kern_sigaction(td, uap->sig, actp, oactp, KSA_FREEBSD40x0002);
850 if (oactp && !error)
4
Assuming 'error' is 0
5
Taking true branch
851 error = copyout(oactp, uap->oact, sizeof(oact));
6
Copies out a struct with uncleared padding (>= 4 bytes)
852 return (error);
853}
854#endif /* COMAPT_FREEBSD4 */
855
856#ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */
857#ifndef _SYS_SYSPROTO_H_
858struct osigaction_args {
859 int signum;
860 struct osigaction *nsa;
861 struct osigaction *osa;
862};
863#endif
864int
865osigaction(td, uap)
866 struct thread *td;
867 register struct osigaction_args *uap;
868{
869 struct osigaction sa;
870 struct sigaction nsa, osa;
871 register struct sigaction *nsap, *osap;
872 int error;
873
874 if (uap->signum <= 0 || uap->signum >= ONSIG32)
875 return (EINVAL22);
876
877 nsap = (uap->nsa != NULL((void *)0)) ? &nsa : NULL((void *)0);
878 osap = (uap->osa != NULL((void *)0)) ? &osa : NULL((void *)0);
879
880 if (nsap) {
881 error = copyin(uap->nsa, &sa, sizeof(sa));
882 if (error)
883 return (error);
884 nsap->sa_handler__sigaction_u.__sa_handler = sa.sa_handler__sigaction_u.__sa_handler;
885 nsap->sa_flags = sa.sa_flags;
886 OSIG2SIG(sa.sa_mask, nsap->sa_mask)do { int __i; for (__i = 0; __i < 4; __i++) (nsap->sa_mask
).__bits[__i] = 0; } while (0); (nsap->sa_mask).__bits[0] =
sa.sa_mask
;
887 }
888 error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET0x0001);
889 if (osap && !error) {
890 sa.sa_handler__sigaction_u.__sa_handler = osap->sa_handler__sigaction_u.__sa_handler;
891 sa.sa_flags = osap->sa_flags;
892 SIG2OSIG(osap->sa_mask, sa.sa_mask)(sa.sa_mask = (osap->sa_mask).__bits[0]);
893 error = copyout(&sa, uap->osa, sizeof(sa));
894 }
895 return (error);
896}
897
898#if !defined(__i386__)
899/* Avoid replicating the same stub everywhere */
900int
901osigreturn(td, uap)
902 struct thread *td;
903 struct osigreturn_args *uap;
904{
905
906 return (nosys(td, (struct nosys_args *)uap));
907}
908#endif
909#endif /* COMPAT_43 */
910
911/*
912 * Initialize signal state for process 0;
913 * set to ignore signals that are ignored by default.
914 */
915void
916siginit(p)
917 struct proc *p;
918{
919 register int i;
920 struct sigacts *ps;
921
922 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
923 ps = p->p_sigacts;
924 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
925 for (i = 1; i <= NSIG32; i++) {
926 if (sigprop(i) & SA_IGNORE0x10 && i != SIGCONT19) {
927 SIGADDSET(ps->ps_sigignore, i)((ps->ps_sigignore).__bits[(((i) - 1) >> 5)] |= (1 <<
(((i) - 1) & 31)))
;
928 }
929 }
930 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
931 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
932}
933
934/*
935 * Reset specified signal to the default disposition.
936 */
937static void
938sigdflt(struct sigacts *ps, int sig)
939{
940
941 mtx_assert(&ps->ps_mtx, MA_OWNED)(void)0;
942 SIGDELSET(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] &=
~(1 << (((sig) - 1) & 31)))
;
943 if ((sigprop(sig) & SA_IGNORE0x10) != 0 && sig != SIGCONT19)
944 SIGADDSET(ps->ps_sigignore, sig)((ps->ps_sigignore).__bits[(((sig) - 1) >> 5)] |= (1
<< (((sig) - 1) & 31)))
;
945 ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] = SIG_DFL((__sighandler_t *)0);
946 SIGDELSET(ps->ps_siginfo, sig)((ps->ps_siginfo).__bits[(((sig) - 1) >> 5)] &= ~
(1 << (((sig) - 1) & 31)))
;
947}
948
949/*
950 * Reset signals for an exec of the specified process.
951 */
952void
953execsigs(struct proc *p)
954{
955 sigset_t osigignore;
956 struct sigacts *ps;
957 int sig;
958 struct thread *td;
959
960 /*
961 * Reset caught signals. Held signals remain held
962 * through td_sigmask (unless they were caught,
963 * and are now ignored by default).
964 */
965 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
966 td = FIRST_THREAD_IN_PROC(p)((&(p)->p_threads)->tqh_first);
967 ps = p->p_sigacts;
968 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
969 while (SIGNOTEMPTY(ps->ps_sigcatch)(!__sigisempty(&(ps->ps_sigcatch)))) {
970 sig = sig_ffs(&ps->ps_sigcatch);
971 sigdflt(ps, sig);
972 if ((sigprop(sig) & SA_IGNORE0x10) != 0)
973 sigqueue_delete_proc(p, sig);
974 }
975
976 /*
977 * As CloudABI processes cannot modify signal handlers, fully
978 * reset all signals to their default behavior. Do ignore
979 * SIGPIPE, as it would otherwise be impossible to recover from
980 * writes to broken pipes and sockets.
981 */
982 if (SV_PROC_ABI(p)((p)->p_sysent->sv_flags & 0xff) == SV_ABI_CLOUDABI17) {
983 osigignore = ps->ps_sigignore;
984 while (SIGNOTEMPTY(osigignore)(!__sigisempty(&(osigignore)))) {
985 sig = sig_ffs(&osigignore);
986 SIGDELSET(osigignore, sig)((osigignore).__bits[(((sig) - 1) >> 5)] &= ~(1 <<
(((sig) - 1) & 31)))
;
987 if (sig != SIGPIPE13)
988 sigdflt(ps, sig);
989 }
990 SIGADDSET(ps->ps_sigignore, SIGPIPE)((ps->ps_sigignore).__bits[(((13) - 1) >> 5)] |= (1 <<
(((13) - 1) & 31)))
;
991 }
992
993 /*
994 * Reset stack state to the user stack.
995 * Clear set of signals caught on the signal stack.
996 */
997 td->td_sigstk.ss_flags = SS_DISABLE0x0004;
998 td->td_sigstk.ss_size = 0;
999 td->td_sigstk.ss_sp = 0;
1000 td->td_pflags &= ~TDP_ALTSTACK0x00000020;
1001 /*
1002 * Reset no zombies if child dies flag as Solaris does.
1003 */
1004 ps->ps_flag &= ~(PS_NOCLDWAIT0x0001 | PS_CLDSIGIGN0x0004);
1005 if (ps->ps_sigact[_SIG_IDX(SIGCHLD)((20) - 1)] == SIG_IGN((__sighandler_t *)1))
1006 ps->ps_sigact[_SIG_IDX(SIGCHLD)((20) - 1)] = SIG_DFL((__sighandler_t *)0);
1007 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1008}
1009
1010/*
1011 * kern_sigprocmask()
1012 *
1013 * Manipulate signal mask.
1014 */
1015int
1016kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset,
1017 int flags)
1018{
1019 sigset_t new_block, oset1;
1020 struct proc *p;
1021 int error;
1022
1023 p = td->td_proc;
1024 if ((flags & SIGPROCMASK_PROC_LOCKED0x0002) != 0)
1025 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
1026 else
1027 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
1028 mtx_assert(&p->p_sigacts->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0(void)0
1029 ? MA_OWNED : MA_NOTOWNED)(void)0;
1030 if (oset != NULL((void *)0))
1031 *oset = td->td_sigmask;
1032
1033 error = 0;
1034 if (set != NULL((void *)0)) {
1035 switch (how) {
1036 case SIG_BLOCK1:
1037 SIG_CANTMASK(*set)((*set).__bits[(((9) - 1) >> 5)] &= ~(1 << ((
(9) - 1) & 31))), ((*set).__bits[(((17) - 1) >> 5)]
&= ~(1 << (((17) - 1) & 31)))
;
1038 oset1 = td->td_sigmask;
1039 SIGSETOR(td->td_sigmask, *set)do { int __i; for (__i = 0; __i < 4; __i++) (td->td_sigmask
).__bits[__i] |= (*set).__bits[__i]; } while (0)
;
1040 new_block = td->td_sigmask;
1041 SIGSETNAND(new_block, oset1)do { int __i; for (__i = 0; __i < 4; __i++) (new_block).__bits
[__i] &= ~(oset1).__bits[__i]; } while (0)
;
1042 break;
1043 case SIG_UNBLOCK2:
1044 SIGSETNAND(td->td_sigmask, *set)do { int __i; for (__i = 0; __i < 4; __i++) (td->td_sigmask
).__bits[__i] &= ~(*set).__bits[__i]; } while (0)
;
1045 signotify(td);
1046 goto out;
1047 case SIG_SETMASK3:
1048 SIG_CANTMASK(*set)((*set).__bits[(((9) - 1) >> 5)] &= ~(1 << ((
(9) - 1) & 31))), ((*set).__bits[(((17) - 1) >> 5)]
&= ~(1 << (((17) - 1) & 31)))
;
1049 oset1 = td->td_sigmask;
1050 if (flags & SIGPROCMASK_OLD0x0001)
1051 SIGSETLO(td->td_sigmask, *set)((td->td_sigmask).__bits[0] = (*set).__bits[0]);
1052 else
1053 td->td_sigmask = *set;
1054 new_block = td->td_sigmask;
1055 SIGSETNAND(new_block, oset1)do { int __i; for (__i = 0; __i < 4; __i++) (new_block).__bits
[__i] &= ~(oset1).__bits[__i]; } while (0)
;
1056 signotify(td);
1057 break;
1058 default:
1059 error = EINVAL22;
1060 goto out;
1061 }
1062
1063 /*
1064 * The new_block set contains signals that were not previously
1065 * blocked, but are blocked now.
1066 *
1067 * In case we block any signal that was not previously blocked
1068 * for td, and process has the signal pending, try to schedule
1069 * signal delivery to some thread that does not block the
1070 * signal, possibly waking it up.
1071 */
1072 if (p->p_numthreads != 1)
1073 reschedule_signals(p, new_block, flags);
1074 }
1075
1076out:
1077 if (!(flags & SIGPROCMASK_PROC_LOCKED0x0002))
1078 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1079 return (error);
1080}
1081
1082#ifndef _SYS_SYSPROTO_H_
1083struct sigprocmask_args {
1084 int how;
1085 const sigset_t *set;
1086 sigset_t *oset;
1087};
1088#endif
1089int
1090sys_sigprocmask(td, uap)
1091 register struct thread *td;
1092 struct sigprocmask_args *uap;
1093{
1094 sigset_t set, oset;
1095 sigset_t *setp, *osetp;
1096 int error;
1097
1098 setp = (uap->set != NULL((void *)0)) ? &set : NULL((void *)0);
1099 osetp = (uap->oset != NULL((void *)0)) ? &oset : NULL((void *)0);
1100 if (setp) {
1101 error = copyin(uap->set, setp, sizeof(set));
1102 if (error)
1103 return (error);
1104 }
1105 error = kern_sigprocmask(td, uap->how, setp, osetp, 0);
1106 if (osetp && !error) {
1107 error = copyout(osetp, uap->oset, sizeof(oset));
1108 }
1109 return (error);
1110}
1111
1112#ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */
1113#ifndef _SYS_SYSPROTO_H_
1114struct osigprocmask_args {
1115 int how;
1116 osigset_t mask;
1117};
1118#endif
1119int
1120osigprocmask(td, uap)
1121 register struct thread *td;
1122 struct osigprocmask_args *uap;
1123{
1124 sigset_t set, oset;
1125 int error;
1126
1127 OSIG2SIG(uap->mask, set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i
] = 0; } while (0); (set).__bits[0] = uap->mask
;
1128 error = kern_sigprocmask(td, uap->how, &set, &oset, 1);
1129 SIG2OSIG(oset, td->td_retval[0])(td->td_uretoff.tdu_retval[0] = (oset).__bits[0]);
1130 return (error);
1131}
1132#endif /* COMPAT_43 */
1133
1134int
1135sys_sigwait(struct thread *td, struct sigwait_args *uap)
1136{
1137 ksiginfo_t ksi;
1138 sigset_t set;
1139 int error;
1140
1141 error = copyin(uap->set, &set, sizeof(set));
1142 if (error) {
1143 td->td_retvaltd_uretoff.tdu_retval[0] = error;
1144 return (0);
1145 }
1146
1147 error = kern_sigtimedwait(td, set, &ksi, NULL((void *)0));
1148 if (error) {
1149 if (error == EINTR4 && td->td_proc->p_osrel < P_OSREL_SIGWAIT700000)
1150 error = ERESTART(-1);
1151 if (error == ERESTART(-1))
1152 return (error);
1153 td->td_retvaltd_uretoff.tdu_retval[0] = error;
1154 return (0);
1155 }
1156
1157 error = copyout(&ksi.ksi_signoksi_info.si_signo, uap->sig, sizeof(ksi.ksi_signoksi_info.si_signo));
1158 td->td_retvaltd_uretoff.tdu_retval[0] = error;
1159 return (0);
1160}
1161
1162int
1163sys_sigtimedwait(struct thread *td, struct sigtimedwait_args *uap)
1164{
1165 struct timespec ts;
1166 struct timespec *timeout;
1167 sigset_t set;
1168 ksiginfo_t ksi;
1169 int error;
1170
1171 if (uap->timeout) {
1172 error = copyin(uap->timeout, &ts, sizeof(ts));
1173 if (error)
1174 return (error);
1175
1176 timeout = &ts;
1177 } else
1178 timeout = NULL((void *)0);
1179
1180 error = copyin(uap->set, &set, sizeof(set));
1181 if (error)
1182 return (error);
1183
1184 error = kern_sigtimedwait(td, set, &ksi, timeout);
1185 if (error)
1186 return (error);
1187
1188 if (uap->info)
1189 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1190
1191 if (error == 0)
1192 td->td_retvaltd_uretoff.tdu_retval[0] = ksi.ksi_signoksi_info.si_signo;
1193 return (error);
1194}
1195
1196int
1197sys_sigwaitinfo(struct thread *td, struct sigwaitinfo_args *uap)
1198{
1199 ksiginfo_t ksi;
1200 sigset_t set;
1201 int error;
1202
1203 error = copyin(uap->set, &set, sizeof(set));
1204 if (error)
1205 return (error);
1206
1207 error = kern_sigtimedwait(td, set, &ksi, NULL((void *)0));
1208 if (error)
1209 return (error);
1210
1211 if (uap->info)
1212 error = copyout(&ksi.ksi_info, uap->info, sizeof(siginfo_t));
1213
1214 if (error == 0)
1215 td->td_retvaltd_uretoff.tdu_retval[0] = ksi.ksi_signoksi_info.si_signo;
1216 return (error);
1217}
1218
1219int
1220kern_sigtimedwait(struct thread *td, sigset_t waitset, ksiginfo_t *ksi,
1221 struct timespec *timeout)
1222{
1223 struct sigacts *ps;
1224 sigset_t saved_mask, new_block;
1225 struct proc *p;
1226 int error, sig, timo, timevalid = 0;
1227 struct timespec rts, ets, ts;
1228 struct timeval tv;
1229
1230 p = td->td_proc;
1231 error = 0;
1232 ets.tv_sec = 0;
1233 ets.tv_nsec = 0;
1234
1235 if (timeout != NULL((void *)0)) {
1236 if (timeout->tv_nsec >= 0 && timeout->tv_nsec < 1000000000) {
1237 timevalid = 1;
1238 getnanouptime(&rts);
1239 ets = rts;
1240 timespecadd(&ets, timeout)do { (&ets)->tv_sec += (timeout)->tv_sec; (&ets
)->tv_nsec += (timeout)->tv_nsec; if ((&ets)->tv_nsec
>= 1000000000) { (&ets)->tv_sec++; (&ets)->
tv_nsec -= 1000000000; } } while (0)
;
1241 }
1242 }
1243 ksiginfo_init(ksi)do { bzero(ksi, sizeof(ksiginfo_t)); } while(0);
1244 /* Some signals can not be waited for. */
1245 SIG_CANTMASK(waitset)((waitset).__bits[(((9) - 1) >> 5)] &= ~(1 <<
(((9) - 1) & 31))), ((waitset).__bits[(((17) - 1) >>
5)] &= ~(1 << (((17) - 1) & 31)))
;
1246 ps = p->p_sigacts;
1247 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
1248 saved_mask = td->td_sigmask;
1249 SIGSETNAND(td->td_sigmask, waitset)do { int __i; for (__i = 0; __i < 4; __i++) (td->td_sigmask
).__bits[__i] &= ~(waitset).__bits[__i]; } while (0)
;
1250 for (;;) {
1251 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
1252 sig = cursig(td);
1253 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1254 KASSERT(sig >= 0, ("sig %d", sig))do { } while (0);
1255 if (sig != 0 && SIGISMEMBER(waitset, sig)((waitset).__bits[(((sig) - 1) >> 5)] & (1 <<
(((sig) - 1) & 31)))
) {
1256 if (sigqueue_get(&td->td_sigqueue, sig, ksi) != 0 ||
1257 sigqueue_get(&p->p_sigqueue, sig, ksi) != 0) {
1258 error = 0;
1259 break;
1260 }
1261 }
1262
1263 if (error != 0)
1264 break;
1265
1266 /*
1267 * POSIX says this must be checked after looking for pending
1268 * signals.
1269 */
1270 if (timeout != NULL((void *)0)) {
1271 if (!timevalid) {
1272 error = EINVAL22;
1273 break;
1274 }
1275 getnanouptime(&rts);
1276 if (timespeccmp(&rts, &ets, >=)(((&rts)->tv_sec == (&ets)->tv_sec) ? ((&rts
)->tv_nsec >= (&ets)->tv_nsec) : ((&rts)->
tv_sec >= (&ets)->tv_sec))
) {
1277 error = EAGAIN35;
1278 break;
1279 }
1280 ts = ets;
1281 timespecsub(&ts, &rts)do { (&ts)->tv_sec -= (&rts)->tv_sec; (&ts)
->tv_nsec -= (&rts)->tv_nsec; if ((&ts)->tv_nsec
< 0) { (&ts)->tv_sec--; (&ts)->tv_nsec += 1000000000
; } } while (0)
;
1282 TIMESPEC_TO_TIMEVAL(&tv, &ts)do { (&tv)->tv_sec = (&ts)->tv_sec; (&tv)->
tv_usec = (&ts)->tv_nsec / 1000; } while (0)
;
1283 timo = tvtohz(&tv);
1284 } else {
1285 timo = 0;
1286 }
1287
1288 error = msleep(ps, &p->p_mtx, PPAUSE|PCATCH, "sigwait", timo)_sleep((ps), &(&p->p_mtx)->lock_object, (((80) +
36)|0x100), ("sigwait"), tick_sbt * (timo), 0, 0x0100)
;
1289
1290 if (timeout != NULL((void *)0)) {
1291 if (error == ERESTART(-1)) {
1292 /* Timeout can not be restarted. */
1293 error = EINTR4;
1294 } else if (error == EAGAIN35) {
1295 /* We will calculate timeout by ourself. */
1296 error = 0;
1297 }
1298 }
1299 }
1300
1301 new_block = saved_mask;
1302 SIGSETNAND(new_block, td->td_sigmask)do { int __i; for (__i = 0; __i < 4; __i++) (new_block).__bits
[__i] &= ~(td->td_sigmask).__bits[__i]; } while (0)
;
1303 td->td_sigmask = saved_mask;
1304 /*
1305 * Fewer signals can be delivered to us, reschedule signal
1306 * notification.
1307 */
1308 if (p->p_numthreads != 1)
1309 reschedule_signals(p, new_block, 0);
1310
1311 if (error == 0) {
1312 SDT_PROBE2(proc, , , signal__clear, sig, ksi)do { if (__builtin_expect((sdt_proc___signal__clear->id), 0
)) (*sdt_probe_func)(sdt_proc___signal__clear->id, (uintptr_t
) sig, (uintptr_t) ksi, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t
) 0); } while (0)
;
1313
1314 if (ksi->ksi_codeksi_info.si_code == SI_TIMER0x10003)
1315 itimer_accept(p, ksi->ksi_timeridksi_info._reason._timer._timerid, ksi);
1316
1317#ifdef KTRACE1
1318 if (KTRPOINT(td, KTR_PSIG)((((td))->td_proc->p_traceflag & (1 << (5))) &&
!((td)->td_pflags & 0x00000004))
) {
1319 sig_t action;
1320
1321 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
1322 action = ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)];
1323 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1324 ktrpsig(sig, action, &td->td_sigmask, ksi->ksi_codeksi_info.si_code);
1325 }
1326#endif
1327 if (sig == SIGKILL9)
1328 sigexit(td, sig);
1329 }
1330 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1331 return (error);
1332}
1333
1334#ifndef _SYS_SYSPROTO_H_
1335struct sigpending_args {
1336 sigset_t *set;
1337};
1338#endif
1339int
1340sys_sigpending(td, uap)
1341 struct thread *td;
1342 struct sigpending_args *uap;
1343{
1344 struct proc *p = td->td_proc;
1345 sigset_t pending;
1346
1347 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
1348 pending = p->p_sigqueue.sq_signals;
1349 SIGSETOR(pending, td->td_sigqueue.sq_signals)do { int __i; for (__i = 0; __i < 4; __i++) (pending).__bits
[__i] |= (td->td_sigqueue.sq_signals).__bits[__i]; } while
(0)
;
1350 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1351 return (copyout(&pending, uap->set, sizeof(sigset_t)));
1352}
1353
1354#ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */
1355#ifndef _SYS_SYSPROTO_H_
1356struct osigpending_args {
1357 int dummy;
1358};
1359#endif
1360int
1361osigpending(td, uap)
1362 struct thread *td;
1363 struct osigpending_args *uap;
1364{
1365 struct proc *p = td->td_proc;
1366 sigset_t pending;
1367
1368 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
1369 pending = p->p_sigqueue.sq_signals;
1370 SIGSETOR(pending, td->td_sigqueue.sq_signals)do { int __i; for (__i = 0; __i < 4; __i++) (pending).__bits
[__i] |= (td->td_sigqueue.sq_signals).__bits[__i]; } while
(0)
;
1371 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1372 SIG2OSIG(pending, td->td_retval[0])(td->td_uretoff.tdu_retval[0] = (pending).__bits[0]);
1373 return (0);
1374}
1375#endif /* COMPAT_43 */
1376
1377#if defined(COMPAT_43)
1378/*
1379 * Generalized interface signal handler, 4.3-compatible.
1380 */
1381#ifndef _SYS_SYSPROTO_H_
1382struct osigvec_args {
1383 int signum;
1384 struct sigvec *nsv;
1385 struct sigvec *osv;
1386};
1387#endif
1388/* ARGSUSED */
1389int
1390osigvec(td, uap)
1391 struct thread *td;
1392 register struct osigvec_args *uap;
1393{
1394 struct sigvec vec;
1395 struct sigaction nsa, osa;
1396 register struct sigaction *nsap, *osap;
1397 int error;
1398
1399 if (uap->signum <= 0 || uap->signum >= ONSIG32)
1400 return (EINVAL22);
1401 nsap = (uap->nsv != NULL((void *)0)) ? &nsa : NULL((void *)0);
1402 osap = (uap->osv != NULL((void *)0)) ? &osa : NULL((void *)0);
1403 if (nsap) {
1404 error = copyin(uap->nsv, &vec, sizeof(vec));
1405 if (error)
1406 return (error);
1407 nsap->sa_handler__sigaction_u.__sa_handler = vec.sv_handler;
1408 OSIG2SIG(vec.sv_mask, nsap->sa_mask)do { int __i; for (__i = 0; __i < 4; __i++) (nsap->sa_mask
).__bits[__i] = 0; } while (0); (nsap->sa_mask).__bits[0] =
vec.sv_mask
;
1409 nsap->sa_flags = vec.sv_flags;
1410 nsap->sa_flags ^= SA_RESTART0x0002; /* opposite of SV_INTERRUPT */
1411 }
1412 error = kern_sigaction(td, uap->signum, nsap, osap, KSA_OSIGSET0x0001);
1413 if (osap && !error) {
1414 vec.sv_handler = osap->sa_handler__sigaction_u.__sa_handler;
1415 SIG2OSIG(osap->sa_mask, vec.sv_mask)(vec.sv_mask = (osap->sa_mask).__bits[0]);
1416 vec.sv_flags = osap->sa_flags;
1417 vec.sv_flags &= ~SA_NOCLDWAIT0x0020;
1418 vec.sv_flags ^= SA_RESTART0x0002;
1419 error = copyout(&vec, uap->osv, sizeof(vec));
1420 }
1421 return (error);
1422}
1423
1424#ifndef _SYS_SYSPROTO_H_
1425struct osigblock_args {
1426 int mask;
1427};
1428#endif
1429int
1430osigblock(td, uap)
1431 register struct thread *td;
1432 struct osigblock_args *uap;
1433{
1434 sigset_t set, oset;
1435
1436 OSIG2SIG(uap->mask, set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i
] = 0; } while (0); (set).__bits[0] = uap->mask
;
1437 kern_sigprocmask(td, SIG_BLOCK1, &set, &oset, 0);
1438 SIG2OSIG(oset, td->td_retval[0])(td->td_uretoff.tdu_retval[0] = (oset).__bits[0]);
1439 return (0);
1440}
1441
1442#ifndef _SYS_SYSPROTO_H_
1443struct osigsetmask_args {
1444 int mask;
1445};
1446#endif
1447int
1448osigsetmask(td, uap)
1449 struct thread *td;
1450 struct osigsetmask_args *uap;
1451{
1452 sigset_t set, oset;
1453
1454 OSIG2SIG(uap->mask, set)do { int __i; for (__i = 0; __i < 4; __i++) (set).__bits[__i
] = 0; } while (0); (set).__bits[0] = uap->mask
;
1455 kern_sigprocmask(td, SIG_SETMASK3, &set, &oset, 0);
1456 SIG2OSIG(oset, td->td_retval[0])(td->td_uretoff.tdu_retval[0] = (oset).__bits[0]);
1457 return (0);
1458}
1459#endif /* COMPAT_43 */
1460
1461/*
1462 * Suspend calling thread until signal, providing mask to be set in the
1463 * meantime.
1464 */
1465#ifndef _SYS_SYSPROTO_H_
1466struct sigsuspend_args {
1467 const sigset_t *sigmask;
1468};
1469#endif
1470/* ARGSUSED */
1471int
1472sys_sigsuspend(td, uap)
1473 struct thread *td;
1474 struct sigsuspend_args *uap;
1475{
1476 sigset_t mask;
1477 int error;
1478
1479 error = copyin(uap->sigmask, &mask, sizeof(mask));
1480 if (error)
1481 return (error);
1482 return (kern_sigsuspend(td, mask));
1483}
1484
1485int
1486kern_sigsuspend(struct thread *td, sigset_t mask)
1487{
1488 struct proc *p = td->td_proc;
1489 int has_sig, sig;
1490
1491 /*
1492 * When returning from sigsuspend, we want
1493 * the old mask to be restored after the
1494 * signal handler has finished. Thus, we
1495 * save it here and mark the sigacts structure
1496 * to indicate this.
1497 */
1498 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
1499 kern_sigprocmask(td, SIG_SETMASK3, &mask, &td->td_oldsigmask,
1500 SIGPROCMASK_PROC_LOCKED0x0002);
1501 td->td_pflags |= TDP_OLDMASK0x00000001;
1502
1503 /*
1504 * Process signals now. Otherwise, we can get spurious wakeup
1505 * due to signal entered process queue, but delivered to other
1506 * thread. But sigsuspend should return only on signal
1507 * delivery.
1508 */
1509 (p->p_sysent->sv_set_syscall_retval)(td, EINTR4);
1510 for (has_sig = 0; !has_sig;) {
1511 while (msleep(&p->p_sigacts, &p->p_mtx, PPAUSE|PCATCH, "pause",_sleep((&p->p_sigacts), &(&p->p_mtx)->lock_object
, (((80) + 36)|0x100), ("pause"), tick_sbt * (0), 0, 0x0100)
1512 0)_sleep((&p->p_sigacts), &(&p->p_mtx)->lock_object
, (((80) + 36)|0x100), ("pause"), tick_sbt * (0), 0, 0x0100)
== 0)
1513 /* void */;
1514 thread_suspend_check(0);
1515 mtx_lock(&p->p_sigacts->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&p->p_sigacts->ps_mtx))))->mtx_lock != 0x00000004
|| !atomic_cmpset_long(&(((((&p->p_sigacts->ps_mtx
)))))->mtx_lock, 0x00000004, (_tid)))) __mtx_lock_sleep(&
(((((&p->p_sigacts->ps_mtx)))))->mtx_lock, _tid,
(((0))), ((((void *)0))), ((0))); else do { (void)0; do { if
(__builtin_expect((sdt_lockstat___adaptive__acquire->id),
0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire->id
, (uintptr_t) (((&p->p_sigacts->ps_mtx))), (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0
); } while (0); } while (0)
;
1516 while ((sig = cursig(td)) != 0) {
1517 KASSERT(sig >= 0, ("sig %d", sig))do { } while (0);
1518 has_sig += postsig(sig);
1519 }
1520 mtx_unlock(&p->p_sigacts->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
p->p_sigacts->ps_mtx))))->lock_object.lo_data == 0) do
{ (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release
->id, (uintptr_t) (((&p->p_sigacts->ps_mtx))), (
uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); }
while (0); } while (0); if (((((&p->p_sigacts->ps_mtx
))))->mtx_lock != _tid || !atomic_cmpset_long(&(((((&
p->p_sigacts->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&p->p_sigacts->ps_mtx
)))))->mtx_lock, (((0))), ((((void *)0))), ((0))); } while
(0)
;
1521 }
1522 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1523 td->td_errno = EINTR4;
1524 td->td_pflags |= TDP_NERRNO0x08000000;
1525 return (EJUSTRETURN(-2));
1526}
1527
1528#ifdef COMPAT_43 /* XXX - COMPAT_FBSD3 */
1529/*
1530 * Compatibility sigsuspend call for old binaries. Note nonstandard calling
1531 * convention: libc stub passes mask, not pointer, to save a copyin.
1532 */
1533#ifndef _SYS_SYSPROTO_H_
1534struct osigsuspend_args {
1535 osigset_t mask;
1536};
1537#endif
1538/* ARGSUSED */
1539int
1540osigsuspend(td, uap)
1541 struct thread *td;
1542 struct osigsuspend_args *uap;
1543{
1544 sigset_t mask;
1545
1546 OSIG2SIG(uap->mask, mask)do { int __i; for (__i = 0; __i < 4; __i++) (mask).__bits[
__i] = 0; } while (0); (mask).__bits[0] = uap->mask
;
1547 return (kern_sigsuspend(td, mask));
1548}
1549#endif /* COMPAT_43 */
1550
1551#if defined(COMPAT_43)
1552#ifndef _SYS_SYSPROTO_H_
1553struct osigstack_args {
1554 struct sigstack *nss;
1555 struct sigstack *oss;
1556};
1557#endif
1558/* ARGSUSED */
1559int
1560osigstack(td, uap)
1561 struct thread *td;
1562 register struct osigstack_args *uap;
1563{
1564 struct sigstack nss, oss;
1565 int error = 0;
1566
1567 if (uap->nss != NULL((void *)0)) {
1568 error = copyin(uap->nss, &nss, sizeof(nss));
1569 if (error)
1570 return (error);
1571 }
1572 oss.ss_sp = td->td_sigstk.ss_sp;
1573 oss.ss_onstack = sigonstack(cpu_getstack(td)((td)->td_frame->tf_rsp));
1574 if (uap->nss != NULL((void *)0)) {
1575 td->td_sigstk.ss_sp = nss.ss_sp;
1576 td->td_sigstk.ss_size = 0;
1577 td->td_sigstk.ss_flags |= nss.ss_onstack & SS_ONSTACK0x0001;
1578 td->td_pflags |= TDP_ALTSTACK0x00000020;
1579 }
1580 if (uap->oss != NULL((void *)0))
1581 error = copyout(&oss, uap->oss, sizeof(oss));
1582
1583 return (error);
1584}
1585#endif /* COMPAT_43 */
1586
1587#ifndef _SYS_SYSPROTO_H_
1588struct sigaltstack_args {
1589 stack_t *ss;
1590 stack_t *oss;
1591};
1592#endif
1593/* ARGSUSED */
1594int
1595sys_sigaltstack(td, uap)
1596 struct thread *td;
1597 register struct sigaltstack_args *uap;
1598{
1599 stack_t ss, oss;
1600 int error;
1601
1602 if (uap->ss != NULL((void *)0)) {
1603 error = copyin(uap->ss, &ss, sizeof(ss));
1604 if (error)
1605 return (error);
1606 }
1607 error = kern_sigaltstack(td, (uap->ss != NULL((void *)0)) ? &ss : NULL((void *)0),
1608 (uap->oss != NULL((void *)0)) ? &oss : NULL((void *)0));
1609 if (error)
1610 return (error);
1611 if (uap->oss != NULL((void *)0))
1612 error = copyout(&oss, uap->oss, sizeof(stack_t));
1613 return (error);
1614}
1615
1616int
1617kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss)
1618{
1619 struct proc *p = td->td_proc;
1620 int oonstack;
1621
1622 oonstack = sigonstack(cpu_getstack(td)((td)->td_frame->tf_rsp));
1623
1624 if (oss != NULL((void *)0)) {
1625 *oss = td->td_sigstk;
1626 oss->ss_flags = (td->td_pflags & TDP_ALTSTACK0x00000020)
1627 ? ((oonstack) ? SS_ONSTACK0x0001 : 0) : SS_DISABLE0x0004;
1628 }
1629
1630 if (ss != NULL((void *)0)) {
1631 if (oonstack)
1632 return (EPERM1);
1633 if ((ss->ss_flags & ~SS_DISABLE0x0004) != 0)
1634 return (EINVAL22);
1635 if (!(ss->ss_flags & SS_DISABLE0x0004)) {
1636 if (ss->ss_size < p->p_sysent->sv_minsigstksz)
1637 return (ENOMEM12);
1638
1639 td->td_sigstk = *ss;
1640 td->td_pflags |= TDP_ALTSTACK0x00000020;
1641 } else {
1642 td->td_pflags &= ~TDP_ALTSTACK0x00000020;
1643 }
1644 }
1645 return (0);
1646}
1647
1648/*
1649 * Common code for kill process group/broadcast kill.
1650 * cp is calling process.
1651 */
1652static int
1653killpg1(struct thread *td, int sig, int pgid, int all, ksiginfo_t *ksi)
1654{
1655 struct proc *p;
1656 struct pgrp *pgrp;
1657 int err;
1658 int ret;
1659
1660 ret = ESRCH3;
1661 if (all) {
1662 /*
1663 * broadcast
1664 */
1665 sx_slock(&allproc_lock)(void)__sx_slock(((&allproc_lock)), 0, (((void *)0)), (0)
)
;
1666 FOREACH_PROC_IN_SYSTEM(p)for (((p)) = (((&allproc))->lh_first); ((p)); ((p)) = (
(((p)))->p_list.le_next))
{
1667 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
1668 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM0x00200 ||
1669 p == td->td_proc || p->p_state == PRS_NEW) {
1670 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1671 continue;
1672 }
1673 err = p_cansignal(td, p, sig);
1674 if (err == 0) {
1675 if (sig)
1676 pksignal(p, sig, ksi);
1677 ret = err;
1678 }
1679 else if (ret == ESRCH3)
1680 ret = err;
1681 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1682 }
1683 sx_sunlock(&allproc_lock)__sx_sunlock(((&allproc_lock)), (((void *)0)), (0));
1684 } else {
1685 sx_slock(&proctree_lock)(void)__sx_slock(((&proctree_lock)), 0, (((void *)0)), (0
))
;
1686 if (pgid == 0) {
1687 /*
1688 * zero pgid means send to my process group.
1689 */
1690 pgrp = td->td_proc->p_pgrp;
1691 PGRP_LOCK(pgrp)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(pgrp)->pg_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(pgrp)->pg_mtx)))))->mtx_lock, 0x00000004
, (_tid)))) __mtx_lock_sleep(&(((((&(pgrp)->pg_mtx
)))))->mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else
do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(pgrp)->pg_mtx))), (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0
); } while (0); } while (0)
;
1692 } else {
1693 pgrp = pgfind(pgid);
1694 if (pgrp == NULL((void *)0)) {
1695 sx_sunlock(&proctree_lock)__sx_sunlock(((&proctree_lock)), (((void *)0)), (0));
1696 return (ESRCH3);
1697 }
1698 }
1699 sx_sunlock(&proctree_lock)__sx_sunlock(((&proctree_lock)), (((void *)0)), (0));
1700 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)for ((p) = (((&pgrp->pg_members))->lh_first); (p); (
p) = (((p))->p_pglist.le_next))
{
1701 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
1702 if (p->p_pid <= 1 || p->p_flag & P_SYSTEM0x00200 ||
1703 p->p_state == PRS_NEW) {
1704 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1705 continue;
1706 }
1707 err = p_cansignal(td, p, sig);
1708 if (err == 0) {
1709 if (sig)
1710 pksignal(p, sig, ksi);
1711 ret = err;
1712 }
1713 else if (ret == ESRCH3)
1714 ret = err;
1715 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1716 }
1717 PGRP_UNLOCK(pgrp)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(pgrp)->pg_mtx))))->lock_object.lo_data == 0) do { (void
)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release
->id, (uintptr_t) (((&(pgrp)->pg_mtx))), (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0
); } while (0); if (((((&(pgrp)->pg_mtx))))->mtx_lock
!= _tid || !atomic_cmpset_long(&(((((&(pgrp)->pg_mtx
)))))->mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep(&
(((((&(pgrp)->pg_mtx)))))->mtx_lock, (((0))), ((((void
*)0))), ((0))); } while (0)
;
1718 }
1719 return (ret);
1720}
1721
1722#ifndef _SYS_SYSPROTO_H_
1723struct kill_args {
1724 int pid;
1725 int signum;
1726};
1727#endif
1728/* ARGSUSED */
1729int
1730sys_kill(struct thread *td, struct kill_args *uap)
1731{
1732 ksiginfo_t ksi;
1733 struct proc *p;
1734 int error;
1735
1736 /*
1737 * A process in capability mode can send signals only to himself.
1738 * The main rationale behind this is that abort(3) is implemented as
1739 * kill(getpid(), SIGABRT).
1740 */
1741 if (IN_CAPABILITY_MODE(td)(((td)->td_ucred->cr_flags & 0x00000001) != 0) && uap->pid != td->td_proc->p_pid)
1742 return (ECAPMODE94);
1743
1744 AUDIT_ARG_SIGNUM(uap->signum)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_signum
((uap->signum)); } while (0)
;
1745 AUDIT_ARG_PID(uap->pid)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_pid
((uap->pid)); } while (0)
;
1746 if ((u_int)uap->signum > _SIG_MAXSIG128)
1747 return (EINVAL22);
1748
1749 ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0);
1750 ksi.ksi_signoksi_info.si_signo = uap->signum;
1751 ksi.ksi_codeksi_info.si_code = SI_USER0x10001;
1752 ksi.ksi_pidksi_info.si_pid = td->td_proc->p_pid;
1753 ksi.ksi_uidksi_info.si_uid = td->td_ucred->cr_ruid;
1754
1755 if (uap->pid > 0) {
1756 /* kill single process */
1757 if ((p = pfind(uap->pid)) == NULL((void *)0)) {
1758 if ((p = zpfind(uap->pid)) == NULL((void *)0))
1759 return (ESRCH3);
1760 }
1761 AUDIT_ARG_PROCESS(p)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_process
((p)); } while (0)
;
1762 error = p_cansignal(td, p, uap->signum);
1763 if (error == 0 && uap->signum)
1764 pksignal(p, uap->signum, &ksi);
1765 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1766 return (error);
1767 }
1768 switch (uap->pid) {
1769 case -1: /* broadcast signal */
1770 return (killpg1(td, uap->signum, 0, 1, &ksi));
1771 case 0: /* signal own process group */
1772 return (killpg1(td, uap->signum, 0, 0, &ksi));
1773 default: /* negative explicit process group */
1774 return (killpg1(td, uap->signum, -uap->pid, 0, &ksi));
1775 }
1776 /* NOTREACHED */
1777}
1778
1779int
1780sys_pdkill(td, uap)
1781 struct thread *td;
1782 struct pdkill_args *uap;
1783{
1784 struct proc *p;
1785 cap_rights_t rights;
1786 int error;
1787
1788 AUDIT_ARG_SIGNUM(uap->signum)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_signum
((uap->signum)); } while (0)
;
1789 AUDIT_ARG_FD(uap->fd)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_fd
((uap->fd)); } while (0)
;
1790 if ((u_int)uap->signum > _SIG_MAXSIG128)
1791 return (EINVAL22);
1792
1793 error = procdesc_find(td, uap->fd,
1794 cap_rights_init(&rights, CAP_PDKILL)__cap_rights_init(0, &rights, ((1ULL << (57 + (1)))
| (0x0000000000000800ULL)), 0ULL)
, &p);
1795 if (error)
1796 return (error);
1797 AUDIT_ARG_PROCESS(p)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_process
((p)); } while (0)
;
1798 error = p_cansignal(td, p, uap->signum);
1799 if (error == 0 && uap->signum)
1800 kern_psignal(p, uap->signum);
1801 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1802 return (error);
1803}
1804
1805#if defined(COMPAT_43)
1806#ifndef _SYS_SYSPROTO_H_
1807struct okillpg_args {
1808 int pgid;
1809 int signum;
1810};
1811#endif
1812/* ARGSUSED */
1813int
1814okillpg(struct thread *td, struct okillpg_args *uap)
1815{
1816 ksiginfo_t ksi;
1817
1818 AUDIT_ARG_SIGNUM(uap->signum)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_signum
((uap->signum)); } while (0)
;
1819 AUDIT_ARG_PID(uap->pgid)do { if ((((__curthread()))->td_pflags & 0x01000000)) audit_arg_pid
((uap->pgid)); } while (0)
;
1820 if ((u_int)uap->signum > _SIG_MAXSIG128)
1821 return (EINVAL22);
1822
1823 ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0);
1824 ksi.ksi_signoksi_info.si_signo = uap->signum;
1825 ksi.ksi_codeksi_info.si_code = SI_USER0x10001;
1826 ksi.ksi_pidksi_info.si_pid = td->td_proc->p_pid;
1827 ksi.ksi_uidksi_info.si_uid = td->td_ucred->cr_ruid;
1828 return (killpg1(td, uap->signum, uap->pgid, 0, &ksi));
1829}
1830#endif /* COMPAT_43 */
1831
1832#ifndef _SYS_SYSPROTO_H_
1833struct sigqueue_args {
1834 pid_t pid;
1835 int signum;
1836 /* union sigval */ void *value;
1837};
1838#endif
1839int
1840sys_sigqueue(struct thread *td, struct sigqueue_args *uap)
1841{
1842 ksiginfo_t ksi;
1843 struct proc *p;
1844 int error;
1845
1846 if ((u_int)uap->signum > _SIG_MAXSIG128)
1847 return (EINVAL22);
1848
1849 /*
1850 * Specification says sigqueue can only send signal to
1851 * single process.
1852 */
1853 if (uap->pid <= 0)
1854 return (EINVAL22);
1855
1856 if ((p = pfind(uap->pid)) == NULL((void *)0)) {
1857 if ((p = zpfind(uap->pid)) == NULL((void *)0))
1858 return (ESRCH3);
1859 }
1860 error = p_cansignal(td, p, uap->signum);
1861 if (error == 0 && uap->signum != 0) {
1862 ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0);
1863 ksi.ksi_flags = KSI_SIGQ0x08;
1864 ksi.ksi_signoksi_info.si_signo = uap->signum;
1865 ksi.ksi_codeksi_info.si_code = SI_QUEUE0x10002;
1866 ksi.ksi_pidksi_info.si_pid = td->td_proc->p_pid;
1867 ksi.ksi_uidksi_info.si_uid = td->td_ucred->cr_ruid;
1868 ksi.ksi_valueksi_info.si_value.sival_ptr = uap->value;
1869 error = pksignal(p, ksi.ksi_signoksi_info.si_signo, &ksi);
1870 }
1871 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1872 return (error);
1873}
1874
1875/*
1876 * Send a signal to a process group.
1877 */
1878void
1879gsignal(int pgid, int sig, ksiginfo_t *ksi)
1880{
1881 struct pgrp *pgrp;
1882
1883 if (pgid != 0) {
1884 sx_slock(&proctree_lock)(void)__sx_slock(((&proctree_lock)), 0, (((void *)0)), (0
))
;
1885 pgrp = pgfind(pgid);
1886 sx_sunlock(&proctree_lock)__sx_sunlock(((&proctree_lock)), (((void *)0)), (0));
1887 if (pgrp != NULL((void *)0)) {
1888 pgsignal(pgrp, sig, 0, ksi);
1889 PGRP_UNLOCK(pgrp)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(pgrp)->pg_mtx))))->lock_object.lo_data == 0) do { (void
)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release
->id, (uintptr_t) (((&(pgrp)->pg_mtx))), (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0
); } while (0); if (((((&(pgrp)->pg_mtx))))->mtx_lock
!= _tid || !atomic_cmpset_long(&(((((&(pgrp)->pg_mtx
)))))->mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep(&
(((((&(pgrp)->pg_mtx)))))->mtx_lock, (((0))), ((((void
*)0))), ((0))); } while (0)
;
1890 }
1891 }
1892}
1893
1894/*
1895 * Send a signal to a process group. If checktty is 1,
1896 * limit to members which have a controlling terminal.
1897 */
1898void
1899pgsignal(struct pgrp *pgrp, int sig, int checkctty, ksiginfo_t *ksi)
1900{
1901 struct proc *p;
1902
1903 if (pgrp) {
1904 PGRP_LOCK_ASSERT(pgrp, MA_OWNED)(void)0;
1905 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)for ((p) = (((&pgrp->pg_members))->lh_first); (p); (
p) = (((p))->p_pglist.le_next))
{
1906 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
1907 if (p->p_state == PRS_NORMAL &&
1908 (checkctty == 0 || p->p_flag & P_CONTROLT0x00002))
1909 pksignal(p, sig, ksi);
1910 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1911 }
1912 }
1913}
1914
1915
1916/*
1917 * Recalculate the signal mask and reset the signal disposition after
1918 * usermode frame for delivery is formed. Should be called after
1919 * mach-specific routine, because sysent->sv_sendsig() needs correct
1920 * ps_siginfo and signal mask.
1921 */
1922static void
1923postsig_done(int sig, struct thread *td, struct sigacts *ps)
1924{
1925 sigset_t mask;
1926
1927 mtx_assert(&ps->ps_mtx, MA_OWNED)(void)0;
1928 td->td_ru.ru_nsignals++;
1929 mask = ps->ps_catchmask[_SIG_IDX(sig)((sig) - 1)];
1930 if (!SIGISMEMBER(ps->ps_signodefer, sig)((ps->ps_signodefer).__bits[(((sig) - 1) >> 5)] &
(1 << (((sig) - 1) & 31)))
)
1931 SIGADDSET(mask, sig)((mask).__bits[(((sig) - 1) >> 5)] |= (1 << (((sig
) - 1) & 31)))
;
1932 kern_sigprocmask(td, SIG_BLOCK1, &mask, NULL((void *)0),
1933 SIGPROCMASK_PROC_LOCKED0x0002 | SIGPROCMASK_PS_LOCKED0x0004);
1934 if (SIGISMEMBER(ps->ps_sigreset, sig)((ps->ps_sigreset).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
)
1935 sigdflt(ps, sig);
1936}
1937
1938
1939/*
1940 * Send a signal caused by a trap to the current thread. If it will be
1941 * caught immediately, deliver it with correct code. Otherwise, post it
1942 * normally.
1943 */
1944void
1945trapsignal(struct thread *td, ksiginfo_t *ksi)
1946{
1947 struct sigacts *ps;
1948 struct proc *p;
1949 int sig;
1950 int code;
1951
1952 p = td->td_proc;
1953 sig = ksi->ksi_signoksi_info.si_signo;
1954 code = ksi->ksi_codeksi_info.si_code;
1955 KASSERT(_SIG_VALID(sig), ("invalid signal"))do { } while (0);
1956
1957 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
1958 ps = p->p_sigacts;
1959 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
1960 if ((p->p_flag & P_TRACED0x00800) == 0 && SIGISMEMBER(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
&&
1961 !SIGISMEMBER(td->td_sigmask, sig)((td->td_sigmask).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
) {
1962#ifdef KTRACE1
1963 if (KTRPOINT(curthread, KTR_PSIG)(((((__curthread())))->td_proc->p_traceflag & (1 <<
(5))) && !(((__curthread()))->td_pflags & 0x00000004
))
)
1964 ktrpsig(sig, ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)],
1965 &td->td_sigmask, code);
1966#endif
1967 (*p->p_sysent->sv_sendsig)(ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)],
1968 ksi, &td->td_sigmask);
1969 postsig_done(sig, td, ps);
1970 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1971 } else {
1972 /*
1973 * Avoid a possible infinite loop if the thread
1974 * masking the signal or process is ignoring the
1975 * signal.
1976 */
1977 if (kern_forcesigexit &&
1978 (SIGISMEMBER(td->td_sigmask, sig)((td->td_sigmask).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
||
1979 ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] == SIG_IGN((__sighandler_t *)1))) {
1980 SIGDELSET(td->td_sigmask, sig)((td->td_sigmask).__bits[(((sig) - 1) >> 5)] &= ~
(1 << (((sig) - 1) & 31)))
;
1981 SIGDELSET(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] &=
~(1 << (((sig) - 1) & 31)))
;
1982 SIGDELSET(ps->ps_sigignore, sig)((ps->ps_sigignore).__bits[(((sig) - 1) >> 5)] &=
~(1 << (((sig) - 1) & 31)))
;
1983 ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)] = SIG_DFL((__sighandler_t *)0);
1984 }
1985 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1986 p->p_code = code; /* XXX for core dump/debugger */
1987 p->p_sig = sig; /* XXX to verify code */
1988 tdsendsignal(p, td, sig, ksi);
1989 }
1990 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
1991}
1992
1993static struct thread *
1994sigtd(struct proc *p, int sig, int prop)
1995{
1996 struct thread *td, *signal_td;
1997
1998 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
1999
2000 /*
2001 * Check if current thread can handle the signal without
2002 * switching context to another thread.
2003 */
2004 if (curproc((__curthread())->td_proc) == p && !SIGISMEMBER(curthread->td_sigmask, sig)(((__curthread())->td_sigmask).__bits[(((sig) - 1) >>
5)] & (1 << (((sig) - 1) & 31)))
)
2005 return (curthread(__curthread()));
2006 signal_td = NULL((void *)0);
2007 FOREACH_THREAD_IN_PROC(p, td)for (((td)) = (((&(p)->p_threads))->tqh_first); ((td
)); ((td)) = ((((td)))->td_plist.tqe_next))
{
2008 if (!SIGISMEMBER(td->td_sigmask, sig)((td->td_sigmask).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
) {
2009 signal_td = td;
2010 break;
2011 }
2012 }
2013 if (signal_td == NULL((void *)0))
2014 signal_td = FIRST_THREAD_IN_PROC(p)((&(p)->p_threads)->tqh_first);
2015 return (signal_td);
2016}
2017
2018/*
2019 * Send the signal to the process. If the signal has an action, the action
2020 * is usually performed by the target process rather than the caller; we add
2021 * the signal to the set of pending signals for the process.
2022 *
2023 * Exceptions:
2024 * o When a stop signal is sent to a sleeping process that takes the
2025 * default action, the process is stopped without awakening it.
2026 * o SIGCONT restarts stopped processes (or puts them back to sleep)
2027 * regardless of the signal action (eg, blocked or ignored).
2028 *
2029 * Other ignored signals are discarded immediately.
2030 *
2031 * NB: This function may be entered from the debugger via the "kill" DDB
2032 * command. There is little that can be done to mitigate the possibly messy
2033 * side effects of this unwise possibility.
2034 */
2035void
2036kern_psignal(struct proc *p, int sig)
2037{
2038 ksiginfo_t ksi;
2039
2040 ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0);
2041 ksi.ksi_signoksi_info.si_signo = sig;
2042 ksi.ksi_codeksi_info.si_code = SI_KERNEL0x10006;
2043 (void) tdsendsignal(p, NULL((void *)0), sig, &ksi);
2044}
2045
2046int
2047pksignal(struct proc *p, int sig, ksiginfo_t *ksi)
2048{
2049
2050 return (tdsendsignal(p, NULL((void *)0), sig, ksi));
2051}
2052
2053/* Utility function for finding a thread to send signal event to. */
2054int
2055sigev_findtd(struct proc *p ,struct sigevent *sigev, struct thread **ttd)
2056{
2057 struct thread *td;
2058
2059 if (sigev->sigev_notify == SIGEV_THREAD_ID4) {
2060 td = tdfind(sigev->sigev_notify_thread_id_sigev_un._threadid, p->p_pid);
2061 if (td == NULL((void *)0))
2062 return (ESRCH3);
2063 *ttd = td;
2064 } else {
2065 *ttd = NULL((void *)0);
2066 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
2067 }
2068 return (0);
2069}
2070
2071void
2072tdsignal(struct thread *td, int sig)
2073{
2074 ksiginfo_t ksi;
2075
2076 ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0);
2077 ksi.ksi_signoksi_info.si_signo = sig;
2078 ksi.ksi_codeksi_info.si_code = SI_KERNEL0x10006;
2079 (void) tdsendsignal(td->td_proc, td, sig, &ksi);
2080}
2081
2082void
2083tdksignal(struct thread *td, int sig, ksiginfo_t *ksi)
2084{
2085
2086 (void) tdsendsignal(td->td_proc, td, sig, ksi);
2087}
2088
2089int
2090tdsendsignal(struct proc *p, struct thread *td, int sig, ksiginfo_t *ksi)
2091{
2092 sig_t action;
2093 sigqueue_t *sigqueue;
2094 int prop;
2095 struct sigacts *ps;
2096 int intrval;
2097 int ret = 0;
2098 int wakeup_swapper;
2099
2100 MPASS(td == NULL || p == td->td_proc)do { } while (0);
2101 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
2102
2103 if (!_SIG_VALID(sig)((sig) <= 128 && (sig) > 0))
2104 panic("%s(): invalid signal %d", __func__, sig);
2105
2106 KASSERT(ksi == NULL || !KSI_ONQ(ksi), ("%s: ksi on queue", __func__))do { } while (0);
2107
2108 /*
2109 * IEEE Std 1003.1-2001: return success when killing a zombie.
2110 */
2111 if (p->p_state == PRS_ZOMBIE) {
2112 if (ksi && (ksi->ksi_flags & KSI_INS0x04))
2113 ksiginfo_tryfree(ksi);
2114 return (ret);
2115 }
2116
2117 ps = p->p_sigacts;
2118 KNOTE_LOCKED(p->p_klist, NOTE_SIGNAL | sig)knote(p->p_klist, 0x08000000 | sig, 0x0001);
2119 prop = sigprop(sig);
2120
2121 if (td == NULL((void *)0)) {
2122 td = sigtd(p, sig, prop);
2123 sigqueue = &p->p_sigqueue;
2124 } else
2125 sigqueue = &td->td_sigqueue;
2126
2127 SDT_PROBE3(proc, , , signal__send, td, p, sig)do { if (__builtin_expect((sdt_proc___signal__send->id), 0
)) (*sdt_probe_func)(sdt_proc___signal__send->id, (uintptr_t
) td, (uintptr_t) p, (uintptr_t) sig, (uintptr_t) 0, (uintptr_t
) 0); } while (0)
;
2128
2129 /*
2130 * If the signal is being ignored,
2131 * then we forget about it immediately.
2132 * (Note: we don't set SIGCONT in ps_sigignore,
2133 * and if it is set to SIG_IGN,
2134 * action will be SIG_DFL here.)
2135 */
2136 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
2137 if (SIGISMEMBER(ps->ps_sigignore, sig)((ps->ps_sigignore).__bits[(((sig) - 1) >> 5)] &
(1 << (((sig) - 1) & 31)))
) {
2138 SDT_PROBE3(proc, , , signal__discard, td, p, sig)do { if (__builtin_expect((sdt_proc___signal__discard->id)
, 0)) (*sdt_probe_func)(sdt_proc___signal__discard->id, (uintptr_t
) td, (uintptr_t) p, (uintptr_t) sig, (uintptr_t) 0, (uintptr_t
) 0); } while (0)
;
2139
2140 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
2141 if (ksi && (ksi->ksi_flags & KSI_INS0x04))
2142 ksiginfo_tryfree(ksi);
2143 return (ret);
2144 }
2145 if (SIGISMEMBER(td->td_sigmask, sig)((td->td_sigmask).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
)
2146 action = SIG_HOLD((__sighandler_t *)3);
2147 else if (SIGISMEMBER(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
)
2148 action = SIG_CATCH((__sighandler_t *)2);
2149 else
2150 action = SIG_DFL((__sighandler_t *)0);
2151 if (SIGISMEMBER(ps->ps_sigintr, sig)((ps->ps_sigintr).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
)
2152 intrval = EINTR4;
2153 else
2154 intrval = ERESTART(-1);
2155 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
2156
2157 if (prop & SA_CONT0x20)
2158 sigqueue_delete_stopmask_proc(p);
2159 else if (prop & SA_STOP0x04) {
2160 /*
2161 * If sending a tty stop signal to a member of an orphaned
2162 * process group, discard the signal here if the action
2163 * is default; don't stop the process below if sleeping,
2164 * and don't clear any pending SIGCONT.
2165 */
2166 if ((prop & SA_TTYSTOP0x08) &&
2167 (p->p_pgrp->pg_jobc == 0) &&
2168 (action == SIG_DFL((__sighandler_t *)0))) {
2169 if (ksi && (ksi->ksi_flags & KSI_INS0x04))
2170 ksiginfo_tryfree(ksi);
2171 return (ret);
2172 }
2173 sigqueue_delete_proc(p, SIGCONT19);
2174 if (p->p_flag & P_CONTINUED0x10000) {
2175 p->p_flag &= ~P_CONTINUED0x10000;
2176 PROC_LOCK(p->p_pptr)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p->p_pptr)->p_mtx))))->mtx_lock != 0x00000004 ||
!atomic_cmpset_long(&(((((&(p->p_pptr)->p_mtx)
))))->mtx_lock, 0x00000004, (_tid)))) __mtx_lock_sleep(&
(((((&(p->p_pptr)->p_mtx)))))->mtx_lock, _tid, (
((0))), ((((void *)0))), ((0))); else do { (void)0; do { if (
__builtin_expect((sdt_lockstat___adaptive__acquire->id), 0
)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire->id,
(uintptr_t) (((&(p->p_pptr)->p_mtx))), (uintptr_t)
0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0)
; } while (0); } while (0)
;
2177 sigqueue_take(p->p_ksi);
2178 PROC_UNLOCK(p->p_pptr)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p->p_pptr)->p_mtx))))->lock_object.lo_data == 0) do
{ (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release
->id, (uintptr_t) (((&(p->p_pptr)->p_mtx))), (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0
); } while (0); if (((((&(p->p_pptr)->p_mtx))))->
mtx_lock != _tid || !atomic_cmpset_long(&(((((&(p->
p_pptr)->p_mtx)))))->mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep
(&(((((&(p->p_pptr)->p_mtx)))))->mtx_lock, (
((0))), ((((void *)0))), ((0))); } while (0)
;
2179 }
2180 }
2181
2182 ret = sigqueue_add(sigqueue, sig, ksi);
2183 if (ret != 0)
2184 return (ret);
2185 signotify(td);
2186 /*
2187 * Defer further processing for signals which are held,
2188 * except that stopped processes must be continued by SIGCONT.
2189 */
2190 if (action == SIG_HOLD((__sighandler_t *)3) &&
2191 !((prop & SA_CONT0x20) && (p->p_flag & P_STOPPED_SIG0x20000)))
2192 return (ret);
2193 /*
2194 * SIGKILL: Remove procfs STOPEVENTs.
2195 */
2196 if (sig == SIGKILL9) {
2197 /* from procfs_ioctl.c: PIOCBIC */
2198 p->p_stops = 0;
2199 /* from procfs_ioctl.c: PIOCCONT */
2200 p->p_step = 0;
2201 wakeup(&p->p_step);
2202 }
2203 /*
2204 * Some signals have a process-wide effect and a per-thread
2205 * component. Most processing occurs when the process next
2206 * tries to cross the user boundary, however there are some
2207 * times when processing needs to be done immediately, such as
2208 * waking up threads so that they can cross the user boundary.
2209 * We try to do the per-process part here.
2210 */
2211 if (P_SHOULDSTOP(p)((p)->p_flag & (0x20000|0x80000|0x40000))) {
2212 KASSERT(!(p->p_flag & P_WEXIT),do { } while (0)
2213 ("signal to stopped but exiting process"))do { } while (0);
2214 if (sig == SIGKILL9) {
2215 /*
2216 * If traced process is already stopped,
2217 * then no further action is necessary.
2218 */
2219 if (p->p_flag & P_TRACED0x00800)
2220 goto out;
2221 /*
2222 * SIGKILL sets process running.
2223 * It will die elsewhere.
2224 * All threads must be restarted.
2225 */
2226 p->p_flag &= ~P_STOPPED_SIG0x20000;
2227 goto runfast;
2228 }
2229
2230 if (prop & SA_CONT0x20) {
2231 /*
2232 * If traced process is already stopped,
2233 * then no further action is necessary.
2234 */
2235 if (p->p_flag & P_TRACED0x00800)
2236 goto out;
2237 /*
2238 * If SIGCONT is default (or ignored), we continue the
2239 * process but don't leave the signal in sigqueue as
2240 * it has no further action. If SIGCONT is held, we
2241 * continue the process and leave the signal in
2242 * sigqueue. If the process catches SIGCONT, let it
2243 * handle the signal itself. If it isn't waiting on
2244 * an event, it goes back to run state.
2245 * Otherwise, process goes back to sleep state.
2246 */
2247 p->p_flag &= ~P_STOPPED_SIG0x20000;
2248 PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter
(); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004
|| !atomic_cmpset_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock
))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object
.lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)->
p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), ((
0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
} while (0)
;
2249 if (p->p_numthreads == p->p_suspcount) {
2250 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2251 p->p_flag |= P_CONTINUED0x10000;
2252 p->p_xsig = SIGCONT19;
2253 PROC_LOCK(p->p_pptr)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p->p_pptr)->p_mtx))))->mtx_lock != 0x00000004 ||
!atomic_cmpset_long(&(((((&(p->p_pptr)->p_mtx)
))))->mtx_lock, 0x00000004, (_tid)))) __mtx_lock_sleep(&
(((((&(p->p_pptr)->p_mtx)))))->mtx_lock, _tid, (
((0))), ((((void *)0))), ((0))); else do { (void)0; do { if (
__builtin_expect((sdt_lockstat___adaptive__acquire->id), 0
)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire->id,
(uintptr_t) (((&(p->p_pptr)->p_mtx))), (uintptr_t)
0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0)
; } while (0); } while (0)
;
2254 childproc_continued(p);
2255 PROC_UNLOCK(p->p_pptr)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p->p_pptr)->p_mtx))))->lock_object.lo_data == 0) do
{ (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release
->id, (uintptr_t) (((&(p->p_pptr)->p_mtx))), (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0
); } while (0); if (((((&(p->p_pptr)->p_mtx))))->
mtx_lock != _tid || !atomic_cmpset_long(&(((((&(p->
p_pptr)->p_mtx)))))->mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep
(&(((((&(p->p_pptr)->p_mtx)))))->mtx_lock, (
((0))), ((((void *)0))), ((0))); } while (0)
;
2256 PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter
(); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004
|| !atomic_cmpset_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock
))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object
.lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)->
p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), ((
0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
} while (0)
;
2257 }
2258 if (action == SIG_DFL((__sighandler_t *)0)) {
2259 thread_unsuspend(p);
2260 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2261 sigqueue_delete(sigqueue, sig);
2262 goto out;
2263 }
2264 if (action == SIG_CATCH((__sighandler_t *)2)) {
2265 /*
2266 * The process wants to catch it so it needs
2267 * to run at least one thread, but which one?
2268 */
2269 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2270 goto runfast;
2271 }
2272 /*
2273 * The signal is not ignored or caught.
2274 */
2275 thread_unsuspend(p);
2276 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2277 goto out;
2278 }
2279
2280 if (prop & SA_STOP0x04) {
2281 /*
2282 * If traced process is already stopped,
2283 * then no further action is necessary.
2284 */
2285 if (p->p_flag & P_TRACED0x00800)
2286 goto out;
2287 /*
2288 * Already stopped, don't need to stop again
2289 * (If we did the shell could get confused).
2290 * Just make sure the signal STOP bit set.
2291 */
2292 p->p_flag |= P_STOPPED_SIG0x20000;
2293 sigqueue_delete(sigqueue, sig);
2294 goto out;
2295 }
2296
2297 /*
2298 * All other kinds of signals:
2299 * If a thread is sleeping interruptibly, simulate a
2300 * wakeup so that when it is continued it will be made
2301 * runnable and can look at the signal. However, don't make
2302 * the PROCESS runnable, leave it stopped.
2303 * It may run a bit until it hits a thread_suspend_check().
2304 */
2305 wakeup_swapper = 0;
2306 PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter
(); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004
|| !atomic_cmpset_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock
))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object
.lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)->
p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), ((
0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
} while (0)
;
2307 thread_lock(td)thread_lock_flags_((td), 0, "/usr/src/sys/kern/kern_sig.c", 2307
)
;
2308 if (TD_ON_SLEEPQ(td)((td)->td_wchan != ((void *)0)) && (td->td_flags & TDF_SINTR0x00000008))
2309 wakeup_swapper = sleepq_abort(td, intrval);
2310 thread_unlock(td)do { if ((((((((td)->td_lock)))))->lock_object.lo_data !=
0)) (((((td)->td_lock))))->lock_object.lo_data--; else
{ do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) ((((td)->td_lock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&((((((td)->td_lock)))))->mtx_lock
, 0x00000004); } spinlock_exit(); } while (0)
;
2311 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2312 if (wakeup_swapper)
2313 kick_proc0();
2314 goto out;
2315 /*
2316 * Mutexes are short lived. Threads waiting on them will
2317 * hit thread_suspend_check() soon.
2318 */
2319 } else if (p->p_state == PRS_NORMAL) {
2320 if (p->p_flag & P_TRACED0x00800 || action == SIG_CATCH((__sighandler_t *)2)) {
2321 tdsigwakeup(td, sig, action, intrval);
2322 goto out;
2323 }
2324
2325 MPASS(action == SIG_DFL)do { } while (0);
2326
2327 if (prop & SA_STOP0x04) {
2328 if (p->p_flag & (P_PPWAIT0x00010|P_WEXIT0x02000))
2329 goto out;
2330 p->p_flag |= P_STOPPED_SIG0x20000;
2331 p->p_xsig = sig;
2332 PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter
(); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004
|| !atomic_cmpset_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock
))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object
.lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)->
p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), ((
0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
} while (0)
;
2333 wakeup_swapper = sig_suspend_threads(td, p, 1);
2334 if (p->p_numthreads == p->p_suspcount) {
2335 /*
2336 * only thread sending signal to another
2337 * process can reach here, if thread is sending
2338 * signal to its process, because thread does
2339 * not suspend itself here, p_numthreads
2340 * should never be equal to p_suspcount.
2341 */
2342 thread_stopped(p);
2343 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2344 sigqueue_delete_proc(p, p->p_xsig);
2345 } else
2346 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2347 if (wakeup_swapper)
2348 kick_proc0();
2349 goto out;
2350 }
2351 } else {
2352 /* Not in "NORMAL" state. discard the signal. */
2353 sigqueue_delete(sigqueue, sig);
2354 goto out;
2355 }
2356
2357 /*
2358 * The process is not stopped so we need to apply the signal to all the
2359 * running threads.
2360 */
2361runfast:
2362 tdsigwakeup(td, sig, action, intrval);
2363 PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter
(); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004
|| !atomic_cmpset_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock
))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object
.lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)->
p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), ((
0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
} while (0)
;
2364 thread_unsuspend(p);
2365 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2366out:
2367 /* If we jump here, proc slock should not be owned. */
2368 PROC_SLOCK_ASSERT(p, MA_NOTOWNED)(void)0;
2369 return (ret);
2370}
2371
2372/*
2373 * The force of a signal has been directed against a single
2374 * thread. We need to see what we can do about knocking it
2375 * out of any sleep it may be in etc.
2376 */
2377static void
2378tdsigwakeup(struct thread *td, int sig, sig_t action, int intrval)
2379{
2380 struct proc *p = td->td_proc;
2381 register int prop;
2382 int wakeup_swapper;
2383
2384 wakeup_swapper = 0;
2385 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
2386 prop = sigprop(sig);
2387
2388 PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter
(); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004
|| !atomic_cmpset_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock
))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object
.lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)->
p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), ((
0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
} while (0)
;
2389 thread_lock(td)thread_lock_flags_((td), 0, "/usr/src/sys/kern/kern_sig.c", 2389
)
;
2390 /*
2391 * Bring the priority of a thread up if we want it to get
2392 * killed in this lifetime. Be careful to avoid bumping the
2393 * priority of the idle thread, since we still allow to signal
2394 * kernel processes.
2395 */
2396 if (action == SIG_DFL((__sighandler_t *)0) && (prop & SA_KILL0x01) != 0 &&
2397 td->td_priority > PUSER((120)) && !TD_IS_IDLETHREAD(td)((td)->td_flags & 0x00000020))
2398 sched_prio(td, PUSER((120)));
2399 if (TD_ON_SLEEPQ(td)((td)->td_wchan != ((void *)0))) {
2400 /*
2401 * If thread is sleeping uninterruptibly
2402 * we can't interrupt the sleep... the signal will
2403 * be noticed when the process returns through
2404 * trap() or syscall().
2405 */
2406 if ((td->td_flags & TDF_SINTR0x00000008) == 0)
2407 goto out;
2408 /*
2409 * If SIGCONT is default (or ignored) and process is
2410 * asleep, we are finished; the process should not
2411 * be awakened.
2412 */
2413 if ((prop & SA_CONT0x20) && action == SIG_DFL((__sighandler_t *)0)) {
2414 thread_unlock(td)do { if ((((((((td)->td_lock)))))->lock_object.lo_data !=
0)) (((((td)->td_lock))))->lock_object.lo_data--; else
{ do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) ((((td)->td_lock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&((((((td)->td_lock)))))->mtx_lock
, 0x00000004); } spinlock_exit(); } while (0)
;
2415 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2416 sigqueue_delete(&p->p_sigqueue, sig);
2417 /*
2418 * It may be on either list in this state.
2419 * Remove from both for now.
2420 */
2421 sigqueue_delete(&td->td_sigqueue, sig);
2422 return;
2423 }
2424
2425 /*
2426 * Don't awaken a sleeping thread for SIGSTOP if the
2427 * STOP signal is deferred.
2428 */
2429 if ((prop & SA_STOP0x04) != 0 && (td->td_flags & (TDF_SBDRY0x00002000 |
2430 TDF_SERESTART0x00080000 | TDF_SEINTR0x00200000)) == TDF_SBDRY0x00002000)
2431 goto out;
2432
2433 /*
2434 * Give low priority threads a better chance to run.
2435 */
2436 if (td->td_priority > PUSER((120)) && !TD_IS_IDLETHREAD(td)((td)->td_flags & 0x00000020))
2437 sched_prio(td, PUSER((120)));
2438
2439 wakeup_swapper = sleepq_abort(td, intrval);
2440 } else {
2441 /*
2442 * Other states do nothing with the signal immediately,
2443 * other than kicking ourselves if we are running.
2444 * It will either never be noticed, or noticed very soon.
2445 */
2446#ifdef SMP1
2447 if (TD_IS_RUNNING(td)((td)->td_state == TDS_RUNNING) && td != curthread(__curthread()))
2448 forward_signal(td);
2449#endif
2450 }
2451out:
2452 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2453 thread_unlock(td)do { if ((((((((td)->td_lock)))))->lock_object.lo_data !=
0)) (((((td)->td_lock))))->lock_object.lo_data--; else
{ do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) ((((td)->td_lock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&((((((td)->td_lock)))))->mtx_lock
, 0x00000004); } spinlock_exit(); } while (0)
;
2454 if (wakeup_swapper)
2455 kick_proc0();
2456}
2457
2458static int
2459sig_suspend_threads(struct thread *td, struct proc *p, int sending)
2460{
2461 struct thread *td2;
2462 int wakeup_swapper;
2463
2464 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
2465 PROC_SLOCK_ASSERT(p, MA_OWNED)(void)0;
2466
2467 wakeup_swapper = 0;
2468 FOREACH_THREAD_IN_PROC(p, td2)for (((td2)) = (((&(p)->p_threads))->tqh_first); ((
td2)); ((td2)) = ((((td2)))->td_plist.tqe_next))
{
2469 thread_lock(td2)thread_lock_flags_((td2), 0, "/usr/src/sys/kern/kern_sig.c", 2469
)
;
2470 td2->td_flags |= TDF_ASTPENDING0x00000800 | TDF_NEEDSUSPCHK0x00008000;
2471 if ((TD_IS_SLEEPING(td2)((td2)->td_inhibitors & 0x0002) || TD_IS_SWAPPED(td2)((td2)->td_inhibitors & 0x0004)) &&
2472 (td2->td_flags & TDF_SINTR0x00000008)) {
2473 if (td2->td_flags & TDF_SBDRY0x00002000) {
2474 /*
2475 * Once a thread is asleep with
2476 * TDF_SBDRY and without TDF_SERESTART
2477 * or TDF_SEINTR set, it should never
2478 * become suspended due to this check.
2479 */
2480 KASSERT(!TD_IS_SUSPENDED(td2),do { } while (0)
2481 ("thread with deferred stops suspended"))do { } while (0);
2482 if (TD_SBDRY_INTR(td2)(((td2)->td_flags & (0x00200000 | 0x00080000)) != 0) && sending) {
2483 wakeup_swapper |= sleepq_abort(td2,
2484 TD_SBDRY_ERRNO(td2)(((td2)->td_flags & 0x00200000) != 0 ? 4 : (-1)));
2485 }
2486 } else if (!TD_IS_SUSPENDED(td2)((td2)->td_inhibitors & 0x0001)) {
2487 thread_suspend_one(td2);
2488 }
2489 } else if (!TD_IS_SUSPENDED(td2)((td2)->td_inhibitors & 0x0001)) {
2490 if (sending || td != td2)
2491 td2->td_flags |= TDF_ASTPENDING0x00000800;
2492#ifdef SMP1
2493 if (TD_IS_RUNNING(td2)((td2)->td_state == TDS_RUNNING) && td2 != td)
2494 forward_signal(td2);
2495#endif
2496 }
2497 thread_unlock(td2)do { if ((((((((td2)->td_lock)))))->lock_object.lo_data
!= 0)) (((((td2)->td_lock))))->lock_object.lo_data--; else
{ do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) ((((td2)->td_lock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&((((((td2)->td_lock)))))->mtx_lock
, 0x00000004); } spinlock_exit(); } while (0)
;
2498 }
2499 return (wakeup_swapper);
2500}
2501
2502int
2503ptracestop(struct thread *td, int sig)
2504{
2505 struct proc *p = td->td_proc;
2506
2507 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
2508 KASSERT(!(p->p_flag & P_WEXIT), ("Stopping exiting process"))do { } while (0);
2509 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,(void)0
2510 &p->p_mtx.lock_object, "Stopping for traced signal")(void)0;
2511
2512 td->td_dbgflags |= TDB_XSIG0x00000002;
2513 td->td_xsig = sig;
2514 CTR4(KTR_PTRACE, "ptracestop: tid %d (pid %d) flags %#x sig %d",(void)0
2515 td->td_tid, p->p_pid, td->td_dbgflags, sig)(void)0;
2516 PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter
(); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004
|| !atomic_cmpset_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock
))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object
.lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)->
p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), ((
0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
} while (0)
;
2517 while ((p->p_flag & P_TRACED0x00800) && (td->td_dbgflags & TDB_XSIG0x00000002)) {
2518 if (p->p_flag & P_SINGLE_EXIT0x00400 &&
2519 !(td->td_dbgflags & TDB_EXIT0x00000400)) {
2520 /*
2521 * Ignore ptrace stops except for thread exit
2522 * events when the process exits.
2523 */
2524 td->td_dbgflags &= ~TDB_XSIG0x00000002;
2525 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2526 return (sig);
2527 }
2528 /*
2529 * Just make wait() to work, the last stopped thread
2530 * will win.
2531 */
2532 p->p_xsig = sig;
2533 p->p_xthread = td;
2534 p->p_flag |= (P_STOPPED_SIG0x20000|P_STOPPED_TRACE0x40000);
2535 sig_suspend_threads(td, p, 0);
2536 if ((td->td_dbgflags & TDB_STOPATFORK0x00000080) != 0) {
2537 td->td_dbgflags &= ~TDB_STOPATFORK0x00000080;
2538 cv_broadcast(&p->p_dbgwait)cv_broadcastpri(&p->p_dbgwait, 0);
2539 }
2540stopme:
2541 thread_suspend_switch(td, p);
2542 if (p->p_xthread == td)
2543 p->p_xthread = NULL((void *)0);
2544 if (!(p->p_flag & P_TRACED0x00800))
2545 break;
2546 if (td->td_dbgflags & TDB_SUSPEND0x00000001) {
2547 if (p->p_flag & P_SINGLE_EXIT0x00400)
2548 break;
2549 goto stopme;
2550 }
2551 }
2552 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2553 return (td->td_xsig);
2554}
2555
2556static void
2557reschedule_signals(struct proc *p, sigset_t block, int flags)
2558{
2559 struct sigacts *ps;
2560 struct thread *td;
2561 int sig;
2562
2563 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
2564 ps = p->p_sigacts;
2565 mtx_assert(&ps->ps_mtx, (flags & SIGPROCMASK_PS_LOCKED) != 0 ?(void)0
2566 MA_OWNED : MA_NOTOWNED)(void)0;
2567 if (SIGISEMPTY(p->p_siglist)(__sigisempty(&(p->p_sigqueue.sq_signals))))
2568 return;
2569 SIGSETAND(block, p->p_siglist)do { int __i; for (__i = 0; __i < 4; __i++) (block).__bits
[__i] &= (p->p_sigqueue.sq_signals).__bits[__i]; } while
(0)
;
2570 while ((sig = sig_ffs(&block)) != 0) {
2571 SIGDELSET(block, sig)((block).__bits[(((sig) - 1) >> 5)] &= ~(1 <<
(((sig) - 1) & 31)))
;
2572 td = sigtd(p, sig, 0);
2573 signotify(td);
2574 if (!(flags & SIGPROCMASK_PS_LOCKED0x0004))
2575 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
2576 if (p->p_flag & P_TRACED0x00800 || SIGISMEMBER(ps->ps_sigcatch, sig)((ps->ps_sigcatch).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
)
2577 tdsigwakeup(td, sig, SIG_CATCH((__sighandler_t *)2),
2578 (SIGISMEMBER(ps->ps_sigintr, sig)((ps->ps_sigintr).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
? EINTR4 :
2579 ERESTART(-1)));
2580 if (!(flags & SIGPROCMASK_PS_LOCKED0x0004))
2581 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
2582 }
2583}
2584
2585void
2586tdsigcleanup(struct thread *td)
2587{
2588 struct proc *p;
2589 sigset_t unblocked;
2590
2591 p = td->td_proc;
2592 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
2593
2594 sigqueue_flush(&td->td_sigqueue);
2595 if (p->p_numthreads == 1)
2596 return;
2597
2598 /*
2599 * Since we cannot handle signals, notify signal post code
2600 * about this by filling the sigmask.
2601 *
2602 * Also, if needed, wake up thread(s) that do not block the
2603 * same signals as the exiting thread, since the thread might
2604 * have been selected for delivery and woken up.
2605 */
2606 SIGFILLSET(unblocked)do { int __i; for (__i = 0; __i < 4; __i++) (unblocked).__bits
[__i] = ~0U; } while (0)
;
2607 SIGSETNAND(unblocked, td->td_sigmask)do { int __i; for (__i = 0; __i < 4; __i++) (unblocked).__bits
[__i] &= ~(td->td_sigmask).__bits[__i]; } while (0)
;
2608 SIGFILLSET(td->td_sigmask)do { int __i; for (__i = 0; __i < 4; __i++) (td->td_sigmask
).__bits[__i] = ~0U; } while (0)
;
2609 reschedule_signals(p, unblocked, 0);
2610
2611}
2612
2613static int
2614sigdeferstop_curr_flags(int cflags)
2615{
2616
2617 MPASS((cflags & (TDF_SEINTR | TDF_SERESTART)) == 0 ||do { } while (0)
2618 (cflags & TDF_SBDRY) != 0)do { } while (0);
2619 return (cflags & (TDF_SBDRY0x00002000 | TDF_SEINTR0x00200000 | TDF_SERESTART0x00080000));
2620}
2621
2622/*
2623 * Defer the delivery of SIGSTOP for the current thread, according to
2624 * the requested mode. Returns previous flags, which must be restored
2625 * by sigallowstop().
2626 *
2627 * TDF_SBDRY, TDF_SEINTR, and TDF_SERESTART flags are only set and
2628 * cleared by the current thread, which allow the lock-less read-only
2629 * accesses below.
2630 */
2631int
2632sigdeferstop_impl(int mode)
2633{
2634 struct thread *td;
2635 int cflags, nflags;
2636
2637 td = curthread(__curthread());
2638 cflags = sigdeferstop_curr_flags(td->td_flags);
2639 switch (mode) {
2640 case SIGDEFERSTOP_NOP0:
2641 nflags = cflags;
2642 break;
2643 case SIGDEFERSTOP_OFF1:
2644 nflags = 0;
2645 break;
2646 case SIGDEFERSTOP_SILENT2:
2647 nflags = (cflags | TDF_SBDRY0x00002000) & ~(TDF_SEINTR0x00200000 | TDF_SERESTART0x00080000);
2648 break;
2649 case SIGDEFERSTOP_EINTR3:
2650 nflags = (cflags | TDF_SBDRY0x00002000 | TDF_SEINTR0x00200000) & ~TDF_SERESTART0x00080000;
2651 break;
2652 case SIGDEFERSTOP_ERESTART4:
2653 nflags = (cflags | TDF_SBDRY0x00002000 | TDF_SERESTART0x00080000) & ~TDF_SEINTR0x00200000;
2654 break;
2655 default:
2656 panic("sigdeferstop: invalid mode %x", mode);
2657 break;
2658 }
2659 if (cflags == nflags)
2660 return (SIGDEFERSTOP_VAL_NCHG(-1));
2661 thread_lock(td)thread_lock_flags_((td), 0, "/usr/src/sys/kern/kern_sig.c", 2661
)
;
2662 td->td_flags = (td->td_flags & ~cflags) | nflags;
2663 thread_unlock(td)do { if ((((((((td)->td_lock)))))->lock_object.lo_data !=
0)) (((((td)->td_lock))))->lock_object.lo_data--; else
{ do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) ((((td)->td_lock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&((((((td)->td_lock)))))->mtx_lock
, 0x00000004); } spinlock_exit(); } while (0)
;
2664 return (cflags);
2665}
2666
2667/*
2668 * Restores the STOP handling mode, typically permitting the delivery
2669 * of SIGSTOP for the current thread. This does not immediately
2670 * suspend if a stop was posted. Instead, the thread will suspend
2671 * either via ast() or a subsequent interruptible sleep.
2672 */
2673void
2674sigallowstop_impl(int prev)
2675{
2676 struct thread *td;
2677 int cflags;
2678
2679 KASSERT(prev != SIGDEFERSTOP_VAL_NCHG, ("failed sigallowstop"))do { } while (0);
2680 KASSERT((prev & ~(TDF_SBDRY | TDF_SEINTR | TDF_SERESTART)) == 0,do { } while (0)
2681 ("sigallowstop: incorrect previous mode %x", prev))do { } while (0);
2682 td = curthread(__curthread());
2683 cflags = sigdeferstop_curr_flags(td->td_flags);
2684 if (cflags != prev) {
2685 thread_lock(td)thread_lock_flags_((td), 0, "/usr/src/sys/kern/kern_sig.c", 2685
)
;
2686 td->td_flags = (td->td_flags & ~cflags) | prev;
2687 thread_unlock(td)do { if ((((((((td)->td_lock)))))->lock_object.lo_data !=
0)) (((((td)->td_lock))))->lock_object.lo_data--; else
{ do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) ((((td)->td_lock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&((((((td)->td_lock)))))->mtx_lock
, 0x00000004); } spinlock_exit(); } while (0)
;
2688 }
2689}
2690
2691/*
2692 * If the current process has received a signal (should be caught or cause
2693 * termination, should interrupt current syscall), return the signal number.
2694 * Stop signals with default action are processed immediately, then cleared;
2695 * they aren't returned. This is checked after each entry to the system for
2696 * a syscall or trap (though this can usually be done without calling issignal
2697 * by checking the pending signal masks in cursig.) The normal call
2698 * sequence is
2699 *
2700 * while (sig = cursig(curthread))
2701 * postsig(sig);
2702 */
2703static int
2704issignal(struct thread *td)
2705{
2706 struct proc *p;
2707 struct sigacts *ps;
2708 struct sigqueue *queue;
2709 sigset_t sigpending;
2710 int sig, prop, newsig;
2711
2712 p = td->td_proc;
2713 ps = p->p_sigacts;
2714 mtx_assert(&ps->ps_mtx, MA_OWNED)(void)0;
2715 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
2716 for (;;) {
2717 int traced = (p->p_flag & P_TRACED0x00800) || (p->p_stops & S_SIG0x00000002);
2718
2719 sigpending = td->td_sigqueue.sq_signals;
2720 SIGSETOR(sigpending, p->p_sigqueue.sq_signals)do { int __i; for (__i = 0; __i < 4; __i++) (sigpending).__bits
[__i] |= (p->p_sigqueue.sq_signals).__bits[__i]; } while (
0)
;
2721 SIGSETNAND(sigpending, td->td_sigmask)do { int __i; for (__i = 0; __i < 4; __i++) (sigpending).__bits
[__i] &= ~(td->td_sigmask).__bits[__i]; } while (0)
;
2722
2723 if ((p->p_flag & P_PPWAIT0x00010) != 0 || (td->td_flags &
2724 (TDF_SBDRY0x00002000 | TDF_SERESTART0x00080000 | TDF_SEINTR0x00200000)) == TDF_SBDRY0x00002000)
2725 SIG_STOPSIGMASK(sigpending)((sigpending).__bits[(((17) - 1) >> 5)] &= ~(1 <<
(((17) - 1) & 31))), ((sigpending).__bits[(((18) - 1) >>
5)] &= ~(1 << (((18) - 1) & 31))), ((sigpending
).__bits[(((21) - 1) >> 5)] &= ~(1 << (((21) -
1) & 31))), ((sigpending).__bits[(((22) - 1) >> 5)
] &= ~(1 << (((22) - 1) & 31)))
;
2726 if (SIGISEMPTY(sigpending)(__sigisempty(&(sigpending)))) /* no signal to send */
2727 return (0);
2728 sig = sig_ffs(&sigpending);
2729
2730 if (p->p_stops & S_SIG0x00000002) {
2731 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
2732 stopevent(p, S_SIG0x00000002, sig);
2733 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
2734 }
2735
2736 /*
2737 * We should see pending but ignored signals
2738 * only if P_TRACED was on when they were posted.
2739 */
2740 if (SIGISMEMBER(ps->ps_sigignore, sig)((ps->ps_sigignore).__bits[(((sig) - 1) >> 5)] &
(1 << (((sig) - 1) & 31)))
&& (traced == 0)) {
2741 sigqueue_delete(&td->td_sigqueue, sig);
2742 sigqueue_delete(&p->p_sigqueue, sig);
2743 continue;
2744 }
2745 if (p->p_flag & P_TRACED0x00800 && (p->p_flag & P_PPTRACE0x80000000) == 0) {
2746 /*
2747 * If traced, always stop.
2748 * Remove old signal from queue before the stop.
2749 * XXX shrug off debugger, it causes siginfo to
2750 * be thrown away.
2751 */
2752 queue = &td->td_sigqueue;
2753 td->td_dbgksi.ksi_signoksi_info.si_signo = 0;
2754 if (sigqueue_get(queue, sig, &td->td_dbgksi) == 0) {
2755 queue = &p->p_sigqueue;
2756 sigqueue_get(queue, sig, &td->td_dbgksi);
2757 }
2758
2759 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
2760 newsig = ptracestop(td, sig);
2761 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
2762
2763 if (sig != newsig) {
2764
2765 /*
2766 * If parent wants us to take the signal,
2767 * then it will leave it in p->p_xsig;
2768 * otherwise we just look for signals again.
2769 */
2770 if (newsig == 0)
2771 continue;
2772 sig = newsig;
2773
2774 /*
2775 * Put the new signal into td_sigqueue. If the
2776 * signal is being masked, look for other
2777 * signals.
2778 */
2779 sigqueue_add(queue, sig, NULL((void *)0));
2780 if (SIGISMEMBER(td->td_sigmask, sig)((td->td_sigmask).__bits[(((sig) - 1) >> 5)] & (
1 << (((sig) - 1) & 31)))
)
2781 continue;
2782 signotify(td);
2783 } else {
2784 if (td->td_dbgksi.ksi_signoksi_info.si_signo != 0) {
2785 td->td_dbgksi.ksi_flags |= KSI_HEAD0x10;
2786 if (sigqueue_add(&td->td_sigqueue, sig,
2787 &td->td_dbgksi) != 0)
2788 td->td_dbgksi.ksi_signoksi_info.si_signo = 0;
2789 }
2790 if (td->td_dbgksi.ksi_signoksi_info.si_signo == 0)
2791 sigqueue_add(&td->td_sigqueue, sig,
2792 NULL((void *)0));
2793 }
2794
2795 /*
2796 * If the traced bit got turned off, go back up
2797 * to the top to rescan signals. This ensures
2798 * that p_sig* and p_sigact are consistent.
2799 */
2800 if ((p->p_flag & P_TRACED0x00800) == 0)
2801 continue;
2802 }
2803
2804 prop = sigprop(sig);
2805
2806 /*
2807 * Decide whether the signal should be returned.
2808 * Return the signal's number, or fall through
2809 * to clear it from the pending mask.
2810 */
2811 switch ((intptr_t)p->p_sigacts->ps_sigact[_SIG_IDX(sig)((sig) - 1)]) {
2812
2813 case (intptr_t)SIG_DFL((__sighandler_t *)0):
2814 /*
2815 * Don't take default actions on system processes.
2816 */
2817 if (p->p_pid <= 1) {
2818#ifdef DIAGNOSTIC
2819 /*
2820 * Are you sure you want to ignore SIGSEGV
2821 * in init? XXX
2822 */
2823 printf("Process (pid %lu) got signal %d\n",
2824 (u_long)p->p_pid, sig);
2825#endif
2826 break; /* == ignore */
2827 }
2828 /*
2829 * If there is a pending stop signal to process
2830 * with default action, stop here,
2831 * then clear the signal. However,
2832 * if process is member of an orphaned
2833 * process group, ignore tty stop signals.
2834 */
2835 if (prop & SA_STOP0x04) {
2836 if (p->p_flag & (P_TRACED0x00800|P_WEXIT0x02000) ||
2837 (p->p_pgrp->pg_jobc == 0 &&
2838 prop & SA_TTYSTOP0x08))
2839 break; /* == ignore */
2840 if (TD_SBDRY_INTR(td)(((td)->td_flags & (0x00200000 | 0x00080000)) != 0)) {
2841 KASSERT((td->td_flags & TDF_SBDRY) != 0,do { } while (0)
2842 ("lost TDF_SBDRY"))do { } while (0);
2843 return (-1);
2844 }
2845 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
2846 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK,(void)0
2847 &p->p_mtx.lock_object, "Catching SIGSTOP")(void)0;
2848 p->p_flag |= P_STOPPED_SIG0x20000;
2849 p->p_xsig = sig;
2850 PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter
(); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004
|| !atomic_cmpset_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock
))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object
.lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)->
p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), ((
0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
} while (0)
;
2851 sig_suspend_threads(td, p, 0);
2852 thread_suspend_switch(td, p);
2853 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2854 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
2855 break;
2856 } else if (prop & SA_IGNORE0x10) {
2857 /*
2858 * Except for SIGCONT, shouldn't get here.
2859 * Default action is to ignore; drop it.
2860 */
2861 break; /* == ignore */
2862 } else
2863 return (sig);
2864 /*NOTREACHED*/
2865
2866 case (intptr_t)SIG_IGN((__sighandler_t *)1):
2867 /*
2868 * Masking above should prevent us ever trying
2869 * to take action on an ignored signal other
2870 * than SIGCONT, unless process is traced.
2871 */
2872 if ((prop & SA_CONT0x20) == 0 &&
2873 (p->p_flag & P_TRACED0x00800) == 0)
2874 printf("issignal\n");
2875 break; /* == ignore */
2876
2877 default:
2878 /*
2879 * This signal has an action, let
2880 * postsig() process it.
2881 */
2882 return (sig);
2883 }
2884 sigqueue_delete(&td->td_sigqueue, sig); /* take the signal! */
2885 sigqueue_delete(&p->p_sigqueue, sig);
2886 }
2887 /* NOTREACHED */
2888}
2889
2890void
2891thread_stopped(struct proc *p)
2892{
2893 int n;
2894
2895 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
2896 PROC_SLOCK_ASSERT(p, MA_OWNED)(void)0;
2897 n = p->p_suspcount;
2898 if (p == curproc((__curthread())->td_proc))
2899 n++;
2900 if ((p->p_flag & P_STOPPED_SIG0x20000) && (n == p->p_numthreads)) {
2901 PROC_SUNLOCK(p)do { if (((((((&(p)->p_slock)))))->lock_object.lo_data
!= 0)) ((((&(p)->p_slock))))->lock_object.lo_data--
; else { do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__release->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
atomic_store_rel_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004); } spinlock_exit(); } while (0)
;
2902 p->p_flag &= ~P_WAITED0x01000;
2903 PROC_LOCK(p->p_pptr)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p->p_pptr)->p_mtx))))->mtx_lock != 0x00000004 ||
!atomic_cmpset_long(&(((((&(p->p_pptr)->p_mtx)
))))->mtx_lock, 0x00000004, (_tid)))) __mtx_lock_sleep(&
(((((&(p->p_pptr)->p_mtx)))))->mtx_lock, _tid, (
((0))), ((((void *)0))), ((0))); else do { (void)0; do { if (
__builtin_expect((sdt_lockstat___adaptive__acquire->id), 0
)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire->id,
(uintptr_t) (((&(p->p_pptr)->p_mtx))), (uintptr_t)
0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0)
; } while (0); } while (0)
;
2904 childproc_stopped(p, (p->p_flag & P_TRACED0x00800) ?
2905 CLD_TRAPPED4 : CLD_STOPPED5);
2906 PROC_UNLOCK(p->p_pptr)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p->p_pptr)->p_mtx))))->lock_object.lo_data == 0) do
{ (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release
->id, (uintptr_t) (((&(p->p_pptr)->p_mtx))), (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0
); } while (0); if (((((&(p->p_pptr)->p_mtx))))->
mtx_lock != _tid || !atomic_cmpset_long(&(((((&(p->
p_pptr)->p_mtx)))))->mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep
(&(((((&(p->p_pptr)->p_mtx)))))->mtx_lock, (
((0))), ((((void *)0))), ((0))); } while (0)
;
2907 PROC_SLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); spinlock_enter
(); if ((((((&(p)->p_slock))))->mtx_lock != 0x00000004
|| !atomic_cmpset_long(&(((((&(p)->p_slock)))))->
mtx_lock, 0x00000004, (_tid)))) { if (((((&(p)->p_slock
))))->mtx_lock == _tid) ((((&(p)->p_slock))))->lock_object
.lo_data++; else _mtx_lock_spin_cookie(&(((((&(p)->
p_slock)))))->mtx_lock, _tid, (((0))), ((((void *)0))), ((
0))); } else do { (void)0; do { if (__builtin_expect((sdt_lockstat___spin__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___spin__acquire->
id, (uintptr_t) (((&(p)->p_slock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
} while (0)
;
2908 }
2909}
2910
2911/*
2912 * Take the action for the specified signal
2913 * from the current set of pending signals.
2914 */
2915int
2916postsig(sig)
2917 register int sig;
2918{
2919 struct thread *td = curthread(__curthread());
2920 register struct proc *p = td->td_proc;
2921 struct sigacts *ps;
2922 sig_t action;
2923 ksiginfo_t ksi;
2924 sigset_t returnmask;
2925
2926 KASSERT(sig != 0, ("postsig"))do { } while (0);
2927
2928 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
2929 ps = p->p_sigacts;
2930 mtx_assert(&ps->ps_mtx, MA_OWNED)(void)0;
2931 ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0);
2932 if (sigqueue_get(&td->td_sigqueue, sig, &ksi) == 0 &&
2933 sigqueue_get(&p->p_sigqueue, sig, &ksi) == 0)
2934 return (0);
2935 ksi.ksi_signoksi_info.si_signo = sig;
2936 if (ksi.ksi_codeksi_info.si_code == SI_TIMER0x10003)
2937 itimer_accept(p, ksi.ksi_timeridksi_info._reason._timer._timerid, &ksi);
2938 action = ps->ps_sigact[_SIG_IDX(sig)((sig) - 1)];
2939#ifdef KTRACE1
2940 if (KTRPOINT(td, KTR_PSIG)((((td))->td_proc->p_traceflag & (1 << (5))) &&
!((td)->td_pflags & 0x00000004))
)
2941 ktrpsig(sig, action, td->td_pflags & TDP_OLDMASK0x00000001 ?
2942 &td->td_oldsigmask : &td->td_sigmask, ksi.ksi_codeksi_info.si_code);
2943#endif
2944 if (p->p_stops & S_SIG0x00000002) {
2945 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
2946 stopevent(p, S_SIG0x00000002, sig);
2947 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
2948 }
2949
2950 if (action == SIG_DFL((__sighandler_t *)0)) {
2951 /*
2952 * Default action, where the default is to kill
2953 * the process. (Other cases were ignored above.)
2954 */
2955 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
2956 sigexit(td, sig);
2957 /* NOTREACHED */
2958 } else {
2959 /*
2960 * If we get here, the signal must be caught.
2961 */
2962 KASSERT(action != SIG_IGN && !SIGISMEMBER(td->td_sigmask, sig),do { } while (0)
2963 ("postsig action"))do { } while (0);
2964 /*
2965 * Set the new mask value and also defer further
2966 * occurrences of this signal.
2967 *
2968 * Special case: user has done a sigsuspend. Here the
2969 * current mask is not of interest, but rather the
2970 * mask from before the sigsuspend is what we want
2971 * restored after the signal processing is completed.
2972 */
2973 if (td->td_pflags & TDP_OLDMASK0x00000001) {
2974 returnmask = td->td_oldsigmask;
2975 td->td_pflags &= ~TDP_OLDMASK0x00000001;
2976 } else
2977 returnmask = td->td_sigmask;
2978
2979 if (p->p_sig == sig) {
2980 p->p_code = 0;
2981 p->p_sig = 0;
2982 }
2983 (*p->p_sysent->sv_sendsig)(action, &ksi, &returnmask);
2984 postsig_done(sig, td, ps);
2985 }
2986 return (1);
2987}
2988
2989/*
2990 * Kill the current process for stated reason.
2991 */
2992void
2993killproc(p, why)
2994 struct proc *p;
2995 char *why;
2996{
2997
2998 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
2999 CTR3(KTR_PROC, "killproc: proc %p (pid %d, %s)", p, p->p_pid,(void)0
3000 p->p_comm)(void)0;
3001 log(LOG_ERR3, "pid %d (%s), uid %d, was killed: %s\n", p->p_pid,
3002 p->p_comm, p->p_ucred ? p->p_ucred->cr_uid : -1, why);
3003 p->p_flag |= P_WKILLED0x08000;
3004 kern_psignal(p, SIGKILL9);
3005}
3006
3007/*
3008 * Force the current process to exit with the specified signal, dumping core
3009 * if appropriate. We bypass the normal tests for masked and caught signals,
3010 * allowing unrecoverable failures to terminate the process without changing
3011 * signal state. Mark the accounting record with the signal termination.
3012 * If dumping core, save the signal number for the debugger. Calls exit and
3013 * does not return.
3014 */
3015void
3016sigexit(td, sig)
3017 struct thread *td;
3018 int sig;
3019{
3020 struct proc *p = td->td_proc;
3021
3022 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
3023 p->p_acflag |= AXSIG0x10;
3024 /*
3025 * We must be single-threading to generate a core dump. This
3026 * ensures that the registers in the core file are up-to-date.
3027 * Also, the ELF dump handler assumes that the thread list doesn't
3028 * change out from under it.
3029 *
3030 * XXX If another thread attempts to single-thread before us
3031 * (e.g. via fork()), we won't get a dump at all.
3032 */
3033 if ((sigprop(sig) & SA_CORE0x02) && thread_single(p, SINGLE_NO_EXIT0) == 0) {
3034 p->p_sig = sig;
3035 /*
3036 * Log signals which would cause core dumps
3037 * (Log as LOG_INFO to appease those who don't want
3038 * these messages.)
3039 * XXX : Todo, as well as euid, write out ruid too
3040 * Note that coredump() drops proc lock.
3041 */
3042 if (coredump(td) == 0)
3043 sig |= WCOREFLAG0200;
3044 if (kern_logsigexit)
3045 log(LOG_INFO6,
3046 "pid %d (%s), uid %d: exited on signal %d%s\n",
3047 p->p_pid, p->p_comm,
3048 td->td_ucred ? td->td_ucred->cr_uid : -1,
3049 sig &~ WCOREFLAG0200,
3050 sig & WCOREFLAG0200 ? " (core dumped)" : "");
3051 } else
3052 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
3053 exit1(td, 0, sig);
3054 /* NOTREACHED */
3055}
3056
3057/*
3058 * Send queued SIGCHLD to parent when child process's state
3059 * is changed.
3060 */
3061static void
3062sigparent(struct proc *p, int reason, int status)
3063{
3064 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
3065 PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED)(void)0;
3066
3067 if (p->p_ksi != NULL((void *)0)) {
3068 p->p_ksi->ksi_signoksi_info.si_signo = SIGCHLD20;
3069 p->p_ksi->ksi_codeksi_info.si_code = reason;
3070 p->p_ksi->ksi_statusksi_info.si_status = status;
3071 p->p_ksi->ksi_pidksi_info.si_pid = p->p_pid;
3072 p->p_ksi->ksi_uidksi_info.si_uid = p->p_ucred->cr_ruid;
3073 if (KSI_ONQ(p->p_ksi)((p->p_ksi)->ksi_sigq != ((void *)0)))
3074 return;
3075 }
3076 pksignal(p->p_pptr, SIGCHLD20, p->p_ksi);
3077}
3078
3079static void
3080childproc_jobstate(struct proc *p, int reason, int sig)
3081{
3082 struct sigacts *ps;
3083
3084 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
3085 PROC_LOCK_ASSERT(p->p_pptr, MA_OWNED)(void)0;
3086
3087 /*
3088 * Wake up parent sleeping in kern_wait(), also send
3089 * SIGCHLD to parent, but SIGCHLD does not guarantee
3090 * that parent will awake, because parent may masked
3091 * the signal.
3092 */
3093 p->p_pptr->p_flag |= P_STATCHILD0x8000000;
3094 wakeup(p->p_pptr);
3095
3096 ps = p->p_pptr->p_sigacts;
3097 mtx_lock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&ps->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&ps->ps_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
3098 if ((ps->ps_flag & PS_NOCLDSTOP0x0002) == 0) {
3099 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
3100 sigparent(p, reason, sig);
3101 } else
3102 mtx_unlock(&ps->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
ps->ps_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&ps->ps_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&ps->ps_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&ps->ps_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&ps->ps_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
3103}
3104
3105void
3106childproc_stopped(struct proc *p, int reason)
3107{
3108
3109 childproc_jobstate(p, reason, p->p_xsig);
3110}
3111
3112void
3113childproc_continued(struct proc *p)
3114{
3115 childproc_jobstate(p, CLD_CONTINUED6, SIGCONT19);
3116}
3117
3118void
3119childproc_exited(struct proc *p)
3120{
3121 int reason, status;
3122
3123 if (WCOREDUMP(p->p_xsig)((p->p_xsig) & 0200)) {
3124 reason = CLD_DUMPED3;
3125 status = WTERMSIG(p->p_xsig)(((p->p_xsig) & 0177));
3126 } else if (WIFSIGNALED(p->p_xsig)(((p->p_xsig) & 0177) != 0177 && ((p->p_xsig
) & 0177) != 0 && (p->p_xsig) != 0x13)
) {
3127 reason = CLD_KILLED2;
3128 status = WTERMSIG(p->p_xsig)(((p->p_xsig) & 0177));
3129 } else {
3130 reason = CLD_EXITED1;
3131 status = p->p_xexit;
3132 }
3133 /*
3134 * XXX avoid calling wakeup(p->p_pptr), the work is
3135 * done in exit1().
3136 */
3137 sigparent(p, reason, status);
3138}
3139
3140/*
3141 * We only have 1 character for the core count in the format
3142 * string, so the range will be 0-9
3143 */
3144#define MAX_NUM_CORES10 10
3145static int num_cores = 5;
3146
3147static int
3148sysctl_debug_num_cores_check (SYSCTL_HANDLER_ARGSstruct sysctl_oid *oidp, void *arg1, intmax_t arg2, struct sysctl_req
*req
)
3149{
3150 int error;
3151 int new_val;
3152
3153 new_val = num_cores;
3154 error = sysctl_handle_int(oidp, &new_val, 0, req);
3155 if (error != 0 || req->newptr == NULL((void *)0))
3156 return (error);
3157 if (new_val > MAX_NUM_CORES10)
3158 new_val = MAX_NUM_CORES10;
3159 if (new_val < 0)
3160 new_val = 0;
3161 num_cores = new_val;
3162 return (0);
3163}
3164SYSCTL_PROC(_debug, OID_AUTO, ncores, CTLTYPE_INT|CTLFLAG_RW,static struct sysctl_oid sysctl___debug_ncores = { .oid_parent
= ((&(&sysctl___debug)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = ((2|(0x80000000
|0x40000000))), .oid_arg1 = (0), .oid_arg2 = (sizeof(int)), .
oid_name = ("ncores"), .oid_handler = (sysctl_debug_num_cores_check
), .oid_fmt = ("I"), .oid_descr = "" }; __asm__(".globl " "__start_set_sysctl_set"
); __asm__(".globl " "__stop_set_sysctl_set"); static void const
* const __set_sysctl_set_sym_sysctl___debug_ncores __attribute__
((__section__("set_" "sysctl_set"))) __attribute__((__used__)
) = &(sysctl___debug_ncores); _Static_assert(((2|(0x80000000
|0x40000000)) & 0xf) != 0, "compile-time assertion failed"
)
3165 0, sizeof(int), sysctl_debug_num_cores_check, "I", "")static struct sysctl_oid sysctl___debug_ncores = { .oid_parent
= ((&(&sysctl___debug)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = ((2|(0x80000000
|0x40000000))), .oid_arg1 = (0), .oid_arg2 = (sizeof(int)), .
oid_name = ("ncores"), .oid_handler = (sysctl_debug_num_cores_check
), .oid_fmt = ("I"), .oid_descr = "" }; __asm__(".globl " "__start_set_sysctl_set"
); __asm__(".globl " "__stop_set_sysctl_set"); static void const
* const __set_sysctl_set_sym_sysctl___debug_ncores __attribute__
((__section__("set_" "sysctl_set"))) __attribute__((__used__)
) = &(sysctl___debug_ncores); _Static_assert(((2|(0x80000000
|0x40000000)) & 0xf) != 0, "compile-time assertion failed"
)
;
3166
3167#define GZ_SUFFIX".gz" ".gz"
3168
3169#ifdef GZIO
3170static int compress_user_cores = 1;
3171SYSCTL_INT(_kern, OID_AUTO, compress_user_cores, CTLFLAG_RWTUN,static struct sysctl_oid sysctl___kern_compress_user_cores = {
.oid_parent = ((&(&sysctl___kern)->oid_children))
, .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))),
.oid_arg1 = (&compress_user_cores), .oid_arg2 = (0), .oid_name
= ("compress_user_cores"), .oid_handler = (sysctl_handle_int
), .oid_fmt = ("I"), .oid_descr = "Compression of user corefiles"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_compress_user_cores
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_compress_user_cores); _Static_assert
((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || (
(((0x80000000|0x40000000)|0x00080000)) & 0) == 2) &&
sizeof(int) == sizeof(*(&compress_user_cores)), "compile-time assertion failed"
)
3172 &compress_user_cores, 0, "Compression of user corefiles")static struct sysctl_oid sysctl___kern_compress_user_cores = {
.oid_parent = ((&(&sysctl___kern)->oid_children))
, .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))),
.oid_arg1 = (&compress_user_cores), .oid_arg2 = (0), .oid_name
= ("compress_user_cores"), .oid_handler = (sysctl_handle_int
), .oid_fmt = ("I"), .oid_descr = "Compression of user corefiles"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_compress_user_cores
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_compress_user_cores); _Static_assert
((((((0x80000000|0x40000000)|0x00080000)) & 0xf) == 0 || (
(((0x80000000|0x40000000)|0x00080000)) & 0) == 2) &&
sizeof(int) == sizeof(*(&compress_user_cores)), "compile-time assertion failed"
)
;
3173
3174int compress_user_cores_gzlevel = 6;
3175SYSCTL_INT(_kern, OID_AUTO, compress_user_cores_gzlevel, CTLFLAG_RWTUN,static struct sysctl_oid sysctl___kern_compress_user_cores_gzlevel
= { .oid_parent = ((&(&sysctl___kern)->oid_children
)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))),
.oid_arg1 = (&compress_user_cores_gzlevel), .oid_arg2 = (
0), .oid_name = ("compress_user_cores_gzlevel"), .oid_handler
= (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Corefile gzip compression level"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_compress_user_cores_gzlevel
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_compress_user_cores_gzlevel
); _Static_assert((((((0x80000000|0x40000000)|0x00080000)) &
0xf) == 0 || ((((0x80000000|0x40000000)|0x00080000)) & 0
) == 2) && sizeof(int) == sizeof(*(&compress_user_cores_gzlevel
)), "compile-time assertion failed")
3176 &compress_user_cores_gzlevel, 0, "Corefile gzip compression level")static struct sysctl_oid sysctl___kern_compress_user_cores_gzlevel
= { .oid_parent = ((&(&sysctl___kern)->oid_children
)), .oid_children = { ((void *)0) }, .oid_number = ((-1)), .oid_kind
= (2 | 0x00040000 | (((0x80000000|0x40000000)|0x00080000))),
.oid_arg1 = (&compress_user_cores_gzlevel), .oid_arg2 = (
0), .oid_name = ("compress_user_cores_gzlevel"), .oid_handler
= (sysctl_handle_int), .oid_fmt = ("I"), .oid_descr = "Corefile gzip compression level"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_compress_user_cores_gzlevel
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_compress_user_cores_gzlevel
); _Static_assert((((((0x80000000|0x40000000)|0x00080000)) &
0xf) == 0 || ((((0x80000000|0x40000000)|0x00080000)) & 0
) == 2) && sizeof(int) == sizeof(*(&compress_user_cores_gzlevel
)), "compile-time assertion failed")
;
3177#else
3178static int compress_user_cores = 0;
3179#endif
3180
3181/*
3182 * Protect the access to corefilename[] by allproc_lock.
3183 */
3184#define corefilename_lockallproc_lock allproc_lock
3185
3186static char corefilename[MAXPATHLEN1024] = {"%N.core"};
3187TUNABLE_STR("kern.corefile", corefilename, sizeof(corefilename))static struct tunable_str __tunable_str_3187 = { ("kern.corefile"
), (corefilename), (sizeof(corefilename)), }; static struct sysinit
__Tunable_init_3187_sys_init = { SI_SUB_TUNABLES, SI_ORDER_MIDDLE
, (sysinit_cfunc_t)(sysinit_nfunc_t)tunable_str_init, ((void *
)(&__tunable_str_3187)) }; __asm__(".globl " "__start_set_sysinit_set"
); __asm__(".globl " "__stop_set_sysinit_set"); static void const
* const __set_sysinit_set_sym___Tunable_init_3187_sys_init __attribute__
((__section__("set_" "sysinit_set"))) __attribute__((__used__
)) = &(__Tunable_init_3187_sys_init)
;
3188
3189static int
3190sysctl_kern_corefile(SYSCTL_HANDLER_ARGSstruct sysctl_oid *oidp, void *arg1, intmax_t arg2, struct sysctl_req
*req
)
3191{
3192 int error;
3193
3194 sx_xlock(&corefilename_lock)(void)__sx_xlock(((&allproc_lock)), (__curthread()), 0, (
((void *)0)), (0))
;
3195 error = sysctl_handle_string(oidp, corefilename, sizeof(corefilename),
3196 req);
3197 sx_xunlock(&corefilename_lock)__sx_xunlock(((&allproc_lock)), (__curthread()), (((void *
)0)), (0))
;
3198
3199 return (error);
3200}
3201SYSCTL_PROC(_kern, OID_AUTO, corefile, CTLTYPE_STRING | CTLFLAG_RW |static struct sysctl_oid sysctl___kern_corefile = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = ((3 | (
0x80000000|0x40000000) | 0x00040000)), .oid_arg1 = (0), .oid_arg2
= (0), .oid_name = ("corefile"), .oid_handler = (sysctl_kern_corefile
), .oid_fmt = ("A"), .oid_descr = "Process corefile name format string"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_corefile
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_corefile); _Static_assert(
((3 | (0x80000000|0x40000000) | 0x00040000) & 0xf) != 0, "compile-time assertion failed"
)
3202 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_corefile, "A",static struct sysctl_oid sysctl___kern_corefile = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = ((3 | (
0x80000000|0x40000000) | 0x00040000)), .oid_arg1 = (0), .oid_arg2
= (0), .oid_name = ("corefile"), .oid_handler = (sysctl_kern_corefile
), .oid_fmt = ("A"), .oid_descr = "Process corefile name format string"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_corefile
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_corefile); _Static_assert(
((3 | (0x80000000|0x40000000) | 0x00040000) & 0xf) != 0, "compile-time assertion failed"
)
3203 "Process corefile name format string")static struct sysctl_oid sysctl___kern_corefile = { .oid_parent
= ((&(&sysctl___kern)->oid_children)), .oid_children
= { ((void *)0) }, .oid_number = ((-1)), .oid_kind = ((3 | (
0x80000000|0x40000000) | 0x00040000)), .oid_arg1 = (0), .oid_arg2
= (0), .oid_name = ("corefile"), .oid_handler = (sysctl_kern_corefile
), .oid_fmt = ("A"), .oid_descr = "Process corefile name format string"
}; __asm__(".globl " "__start_set_sysctl_set"); __asm__(".globl "
"__stop_set_sysctl_set"); static void const * const __set_sysctl_set_sym_sysctl___kern_corefile
__attribute__((__section__("set_" "sysctl_set"))) __attribute__
((__used__)) = &(sysctl___kern_corefile); _Static_assert(
((3 | (0x80000000|0x40000000) | 0x00040000) & 0xf) != 0, "compile-time assertion failed"
)
;
3204
3205/*
3206 * corefile_open(comm, uid, pid, td, compress, vpp, namep)
3207 * Expand the name described in corefilename, using name, uid, and pid
3208 * and open/create core file.
3209 * corefilename is a printf-like string, with three format specifiers:
3210 * %N name of process ("name")
3211 * %P process id (pid)
3212 * %U user id (uid)
3213 * For example, "%N.core" is the default; they can be disabled completely
3214 * by using "/dev/null", or all core files can be stored in "/cores/%U/%N-%P".
3215 * This is controlled by the sysctl variable kern.corefile (see above).
3216 */
3217static int
3218corefile_open(const char *comm, uid_t uid, pid_t pid, struct thread *td,
3219 int compress, struct vnode **vpp, char **namep)
3220{
3221 struct nameidata nd;
3222 struct sbuf sb;
3223 const char *format;
3224 char *hostname, *name;
3225 int indexpos, i, error, cmode, flags, oflags;
3226
3227 hostname = NULL((void *)0);
3228 format = corefilename;
3229 name = malloc(MAXPATHLEN1024, M_TEMP, M_WAITOK0x0002 | M_ZERO0x0100);
3230 indexpos = -1;
3231 (void)sbuf_new(&sb, name, MAXPATHLEN1024, SBUF_FIXEDLEN0x00000000);
3232 sx_slock(&corefilename_lock)(void)__sx_slock(((&allproc_lock)), 0, (((void *)0)), (0)
)
;
3233 for (i = 0; format[i] != '\0'; i++) {
3234 switch (format[i]) {
3235 case '%': /* Format character */
3236 i++;
3237 switch (format[i]) {
3238 case '%':
3239 sbuf_putc(&sb, '%');
3240 break;
3241 case 'H': /* hostname */
3242 if (hostname == NULL((void *)0)) {
3243 hostname = malloc(MAXHOSTNAMELEN256,
3244 M_TEMP, M_WAITOK0x0002);
3245 }
3246 getcredhostname(td->td_ucred, hostname,
3247 MAXHOSTNAMELEN256);
3248 sbuf_printf(&sb, "%s", hostname);
3249 break;
3250 case 'I': /* autoincrementing index */
3251 sbuf_printf(&sb, "0");
3252 indexpos = sbuf_len(&sb) - 1;
3253 break;
3254 case 'N': /* process name */
3255 sbuf_printf(&sb, "%s", comm);
3256 break;
3257 case 'P': /* process id */
3258 sbuf_printf(&sb, "%u", pid);
3259 break;
3260 case 'U': /* user id */
3261 sbuf_printf(&sb, "%u", uid);
3262 break;
3263 default:
3264 log(LOG_ERR3,
3265 "Unknown format character %c in "
3266 "corename `%s'\n", format[i], format);
3267 break;
3268 }
3269 break;
3270 default:
3271 sbuf_putc(&sb, format[i]);
3272 break;
3273 }
3274 }
3275 sx_sunlock(&corefilename_lock)__sx_sunlock(((&allproc_lock)), (((void *)0)), (0));
3276 free(hostname, M_TEMP);
3277 if (compress)
3278 sbuf_printf(&sb, GZ_SUFFIX".gz");
3279 if (sbuf_error(&sb) != 0) {
3280 log(LOG_ERR3, "pid %ld (%s), uid (%lu): corename is too "
3281 "long\n", (long)pid, comm, (u_long)uid);
3282 sbuf_delete(&sb);
3283 free(name, M_TEMP);
3284 return (ENOMEM12);
3285 }
3286 sbuf_finish(&sb);
3287 sbuf_delete(&sb);
3288
3289 cmode = S_IRUSR0000400 | S_IWUSR0000200;
3290 oflags = VN_OPEN_NOAUDIT0x00000001 | VN_OPEN_NAMECACHE0x00000004 |
3291 (capmode_coredump ? VN_OPEN_NOCAPCHECK0x00000002 : 0);
3292
3293 /*
3294 * If the core format has a %I in it, then we need to check
3295 * for existing corefiles before returning a name.
3296 * To do this we iterate over 0..num_cores to find a
3297 * non-existing core file name to use.
3298 */
3299 if (indexpos != -1) {
3300 for (i = 0; i < num_cores; i++) {
3301 flags = O_CREAT0x0200 | O_EXCL0x0800 | FWRITE0x0002 | O_NOFOLLOW0x0100;
3302 name[indexpos] = '0' + i;
3303 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td)NDINIT_ALL(&nd, 0, 0x0000, UIO_SYSSPACE, name, -100, ((void
*)0), 0, td)
;
3304 error = vn_open_cred(&nd, &flags, cmode, oflags,
3305 td->td_ucred, NULL((void *)0));
3306 if (error) {
3307 if (error == EEXIST17)
3308 continue;
3309 log(LOG_ERR3,
3310 "pid %d (%s), uid (%u): Path `%s' failed "
3311 "on initial open test, error = %d\n",
3312 pid, comm, uid, name, error);
3313 }
3314 goto out;
3315 }
3316 }
3317
3318 flags = O_CREAT0x0200 | FWRITE0x0002 | O_NOFOLLOW0x0100;
3319 NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, td)NDINIT_ALL(&nd, 0, 0x0000, UIO_SYSSPACE, name, -100, ((void
*)0), 0, td)
;
3320 error = vn_open_cred(&nd, &flags, cmode, oflags, td->td_ucred, NULL((void *)0));
3321out:
3322 if (error) {
3323#ifdef AUDIT1
3324 audit_proc_coredump(td, name, error);
3325#endif
3326 free(name, M_TEMP);
3327 return (error);
3328 }
3329 NDFREE(&nd, NDF_ONLY_PNBUF(~0x00000020));
3330 *vpp = nd.ni_vp;
3331 *namep = name;
3332 return (0);
3333}
3334
3335static int
3336coredump_sanitise_path(const char *path)
3337{
3338 size_t i;
3339
3340 /*
3341 * Only send a subset of ASCII to devd(8) because it
3342 * might pass these strings to sh -c.
3343 */
3344 for (i = 0; path[i]; i++)
3345 if (!(isalpha(path[i])(((path[i]) >= 'A' && (path[i]) <= 'Z') || ((path
[i]) >= 'a' && (path[i]) <= 'z'))
|| isdigit(path[i])((path[i]) >= '0' && (path[i]) <= '9')) &&
3346 path[i] != '/' && path[i] != '.' &&
3347 path[i] != '-')
3348 return (0);
3349
3350 return (1);
3351}
3352
3353/*
3354 * Dump a process' core. The main routine does some
3355 * policy checking, and creates the name of the coredump;
3356 * then it passes on a vnode and a size limit to the process-specific
3357 * coredump routine if there is one; if there _is not_ one, it returns
3358 * ENOSYS; otherwise it returns the error from the process-specific routine.
3359 */
3360
3361static int
3362coredump(struct thread *td)
3363{
3364 struct proc *p = td->td_proc;
3365 struct ucred *cred = td->td_ucred;
3366 struct vnode *vp;
3367 struct flock lf;
3368 struct vattr vattr;
3369 int error, error1, locked;
3370 char *name; /* name of corefile */
3371 void *rl_cookie;
3372 off_t limit;
3373 char *data = NULL((void *)0);
3374 char *fullpath, *freepath = NULL((void *)0);
3375 size_t len;
3376 static const char comm_name[] = "comm=";
3377 static const char core_name[] = "core=";
3378
3379 PROC_LOCK_ASSERT(p, MA_OWNED)(void)0;
3380 MPASS((p->p_flag & P_HADTHREADS) == 0 || p->p_singlethread == td)do { } while (0);
3381 _STOPEVENT(p, S_CORE, 0)do { (void)0; (void)0; if ((p)->p_stops & (0x00000010)
) stopevent((p), (0x00000010), (0)); } while (0)
;
3382
3383 if (!do_coredump || (!sugid_coredump && (p->p_flag & P_SUGID0x00100) != 0) ||
3384 (p->p_flag2 & P2_NOTRACE0x00000002) != 0) {
3385 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
3386 return (EFAULT14);
3387 }
3388
3389 /*
3390 * Note that the bulk of limit checking is done after
3391 * the corefile is created. The exception is if the limit
3392 * for corefiles is 0, in which case we don't bother
3393 * creating the corefile at all. This layout means that
3394 * a corefile is truncated instead of not being created,
3395 * if it is larger than the limit.
3396 */
3397 limit = (off_t)lim_cur(td, RLIMIT_CORE4);
3398 if (limit == 0 || racct_get_available(p, RACCT_CORE3) == 0) {
3399 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
3400 return (EFBIG27);
3401 }
3402 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
3403
3404 error = corefile_open(p->p_comm, cred->cr_uid, p->p_pid, td,
3405 compress_user_cores, &vp, &name);
3406 if (error != 0)
3407 return (error);
3408
3409 /*
3410 * Don't dump to non-regular files or files with links.
3411 * Do not dump into system files.
3412 */
3413 if (vp->v_type != VREG || VOP_GETATTR(vp, &vattr, cred) != 0 ||
3414 vattr.va_nlink != 1 || (vp->v_vflag & VV_SYSTEM0x0080) != 0) {
3415 VOP_UNLOCK(vp, 0);
3416 error = EFAULT14;
3417 goto out;
3418 }
3419
3420 VOP_UNLOCK(vp, 0);
3421
3422 /* Postpone other writers, including core dumps of other processes. */
3423 rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX)rangelock_wlock(&(vp)->v_rl, (0), (0x7fffffffffffffff)
, (&(vp)->v_interlock))
;
3424
3425 lf.l_whence = SEEK_SET0;
3426 lf.l_start = 0;
3427 lf.l_len = 0;
3428 lf.l_type = F_WRLCK3;
3429 locked = (VOP_ADVLOCK(vp, (caddr_t)p, F_SETLK12, &lf, F_FLOCK0x020) == 0);
3430
3431 VATTR_NULL(&vattr)(*(&vattr) = va_null);
3432 vattr.va_size = 0;
3433 if (set_core_nodump_flag)
3434 vattr.va_flags = UF_NODUMP0x00000001;
3435 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)_vn_lock(vp, 0x080000 | 0x000400, "/usr/src/sys/kern/kern_sig.c"
, 3435)
;
3436 VOP_SETATTR(vp, &vattr, cred);
3437 VOP_UNLOCK(vp, 0);
3438 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
3439 p->p_acflag |= ACORE0x08;
3440 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
3441
3442 if (p->p_sysent->sv_coredump != NULL((void *)0)) {
3443 error = p->p_sysent->sv_coredump(td, vp, limit,
3444 compress_user_cores ? IMGACT_CORE_COMPRESS0x01 : 0);
3445 } else {
3446 error = ENOSYS78;
3447 }
3448
3449 if (locked) {
3450 lf.l_type = F_UNLCK2;
3451 VOP_ADVLOCK(vp, (caddr_t)p, F_UNLCK2, &lf, F_FLOCK0x020);
3452 }
3453 vn_rangelock_unlock(vp, rl_cookie)rangelock_unlock(&(vp)->v_rl, (rl_cookie), (&(vp)->
v_interlock))
;
3454
3455 /*
3456 * Notify the userland helper that a process triggered a core dump.
3457 * This allows the helper to run an automated debugging session.
3458 */
3459 if (error != 0 || coredump_devctl == 0)
3460 goto out;
3461 len = MAXPATHLEN1024 * 2 + sizeof(comm_name) - 1 +
3462 sizeof(' ') + sizeof(core_name) - 1;
3463 data = malloc(len, M_TEMP, M_WAITOK0x0002);
3464 if (vn_fullpath_global(td, p->p_textvp, &fullpath, &freepath) != 0)
3465 goto out;
3466 if (!coredump_sanitise_path(fullpath))
3467 goto out;
3468 snprintf(data, len, "%s%s ", comm_name, fullpath);
3469 free(freepath, M_TEMP);
3470 freepath = NULL((void *)0);
3471 if (vn_fullpath_global(td, vp, &fullpath, &freepath) != 0)
3472 goto out;
3473 if (!coredump_sanitise_path(fullpath))
3474 goto out;
3475 strlcat(data, core_name, len);
3476 strlcat(data, fullpath, len);
3477 devctl_notify("kernel", "signal", "coredump", data);
3478out:
3479 error1 = vn_close(vp, FWRITE0x0002, cred, td);
3480 if (error == 0)
3481 error = error1;
3482#ifdef AUDIT1
3483 audit_proc_coredump(td, name, error);
3484#endif
3485 free(freepath, M_TEMP);
3486 free(data, M_TEMP);
3487 free(name, M_TEMP);
3488 return (error);
3489}
3490
3491/*
3492 * Nonexistent system call-- signal process (may want to handle it). Flag
3493 * error in case process won't see signal immediately (blocked or ignored).
3494 */
3495#ifndef _SYS_SYSPROTO_H_
3496struct nosys_args {
3497 int dummy;
3498};
3499#endif
3500/* ARGSUSED */
3501int
3502nosys(td, args)
3503 struct thread *td;
3504 struct nosys_args *args;
3505{
3506 struct proc *p = td->td_proc;
3507
3508 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
3509 tdsignal(td, SIGSYS12);
3510 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
3511 return (ENOSYS78);
3512}
3513
3514/*
3515 * Send a SIGIO or SIGURG signal to a process or process group using stored
3516 * credentials rather than those of the current process.
3517 */
3518void
3519pgsigio(sigiop, sig, checkctty)
3520 struct sigio **sigiop;
3521 int sig, checkctty;
3522{
3523 ksiginfo_t ksi;
3524 struct sigio *sigio;
3525
3526 ksiginfo_init(&ksi)do { bzero(&ksi, sizeof(ksiginfo_t)); } while(0);
3527 ksi.ksi_signoksi_info.si_signo = sig;
3528 ksi.ksi_codeksi_info.si_code = SI_KERNEL0x10006;
3529
3530 SIGIO_LOCK()do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&sigio_lock))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&sigio_lock)))))->mtx_lock, 0x00000004, (_tid
)))) __mtx_lock_sleep(&(((((&sigio_lock)))))->mtx_lock
, _tid, (((0))), ((((void *)0))), ((0))); else do { (void)0; do
{ if (__builtin_expect((sdt_lockstat___adaptive__acquire->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire->
id, (uintptr_t) (((&sigio_lock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
} while (0)
;
3531 sigio = *sigiop;
3532 if (sigio == NULL((void *)0)) {
3533 SIGIO_UNLOCK()do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
sigio_lock))))->lock_object.lo_data == 0) do { (void)0; do
{ if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&sigio_lock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&sigio_lock))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&sigio_lock)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&sigio_lock)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
3534 return;
3535 }
3536 if (sigio->sio_pgid > 0) {
3537 PROC_LOCK(sigio->sio_proc)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(sigio->sio_u.siu_proc)->p_mtx))))->mtx_lock !=
0x00000004 || !atomic_cmpset_long(&(((((&(sigio->
sio_u.siu_proc)->p_mtx)))))->mtx_lock, 0x00000004, (_tid
)))) __mtx_lock_sleep(&(((((&(sigio->sio_u.siu_proc
)->p_mtx)))))->mtx_lock, _tid, (((0))), ((((void *)0)))
, ((0))); else do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(sigio->sio_u.siu_proc)->p_mtx
))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t)
0); } while (0); } while (0); } while (0)
;
3538 if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc->p_ucred)((sigio->sio_ucred)->cr_uid == 0 || (sigio->sio_ucred
)->cr_ruid == (sigio->sio_u.siu_proc->p_ucred)->cr_ruid
|| (sigio->sio_ucred)->cr_uid == (sigio->sio_u.siu_proc
->p_ucred)->cr_ruid || (sigio->sio_ucred)->cr_ruid
== (sigio->sio_u.siu_proc->p_ucred)->cr_uid || (sigio
->sio_ucred)->cr_uid == (sigio->sio_u.siu_proc->p_ucred
)->cr_uid)
)
3539 kern_psignal(sigio->sio_procsio_u.siu_proc, sig);
3540 PROC_UNLOCK(sigio->sio_proc)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(sigio->sio_u.siu_proc)->p_mtx))))->lock_object.lo_data
== 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release
->id, (uintptr_t) (((&(sigio->sio_u.siu_proc)->p_mtx
))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t)
0); } while (0); } while (0); if (((((&(sigio->sio_u.
siu_proc)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(sigio->sio_u.siu_proc)->p_mtx)))))->
mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep(&(((((&
(sigio->sio_u.siu_proc)->p_mtx)))))->mtx_lock, (((0)
)), ((((void *)0))), ((0))); } while (0)
;
3541 } else if (sigio->sio_pgid < 0) {
3542 struct proc *p;
3543
3544 PGRP_LOCK(sigio->sio_pgrp)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(sigio->sio_u.siu_pgrp)->pg_mtx))))->mtx_lock !=
0x00000004 || !atomic_cmpset_long(&(((((&(sigio->
sio_u.siu_pgrp)->pg_mtx)))))->mtx_lock, 0x00000004, (_tid
)))) __mtx_lock_sleep(&(((((&(sigio->sio_u.siu_pgrp
)->pg_mtx)))))->mtx_lock, _tid, (((0))), ((((void *)0))
), ((0))); else do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(sigio->sio_u.siu_pgrp)->pg_mtx
))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t)
0); } while (0); } while (0); } while (0)
;
3545 LIST_FOREACH(p, &sigio->sio_pgrp->pg_members, p_pglist)for ((p) = (((&sigio->sio_u.siu_pgrp->pg_members))->
lh_first); (p); (p) = (((p))->p_pglist.le_next))
{
3546 PROC_LOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&(p)->p_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, 0x00000004, (
_tid)))) __mtx_lock_sleep(&(((((&(p)->p_mtx)))))->
mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do { (
void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0,
(uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
3547 if (p->p_state == PRS_NORMAL &&
3548 CANSIGIO(sigio->sio_ucred, p->p_ucred)((sigio->sio_ucred)->cr_uid == 0 || (sigio->sio_ucred
)->cr_ruid == (p->p_ucred)->cr_ruid || (sigio->sio_ucred
)->cr_uid == (p->p_ucred)->cr_ruid || (sigio->sio_ucred
)->cr_ruid == (p->p_ucred)->cr_uid || (sigio->sio_ucred
)->cr_uid == (p->p_ucred)->cr_uid)
&&
3549 (checkctty == 0 || (p->p_flag & P_CONTROLT0x00002)))
3550 kern_psignal(p, sig);
3551 PROC_UNLOCK(p)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(p)->p_mtx))))->lock_object.lo_data == 0) do { (void)0;
do { if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&(p)->p_mtx))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&(p)->p_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(p)->p_mtx)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&(p)->p_mtx)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
3552 }
3553 PGRP_UNLOCK(sigio->sio_pgrp)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
(sigio->sio_u.siu_pgrp)->pg_mtx))))->lock_object.lo_data
== 0) do { (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release
->id, (uintptr_t) (((&(sigio->sio_u.siu_pgrp)->pg_mtx
))), (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t)
0); } while (0); } while (0); if (((((&(sigio->sio_u.
siu_pgrp)->pg_mtx))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&(sigio->sio_u.siu_pgrp)->pg_mtx)))))->
mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep(&(((((&
(sigio->sio_u.siu_pgrp)->pg_mtx)))))->mtx_lock, (((0
))), ((((void *)0))), ((0))); } while (0)
;
3554 }
3555 SIGIO_UNLOCK()do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
sigio_lock))))->lock_object.lo_data == 0) do { (void)0; do
{ if (__builtin_expect((sdt_lockstat___adaptive__release->
id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release->
id, (uintptr_t) (((&sigio_lock))), (uintptr_t) 0, (uintptr_t
) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); } while (0);
if (((((&sigio_lock))))->mtx_lock != _tid || !atomic_cmpset_long
(&(((((&sigio_lock)))))->mtx_lock, (_tid), 0x00000004
)) __mtx_unlock_sleep(&(((((&sigio_lock)))))->mtx_lock
, (((0))), ((((void *)0))), ((0))); } while (0)
;
3556}
3557
3558static int
3559filt_sigattach(struct knote *kn)
3560{
3561 struct proc *p = curproc((__curthread())->td_proc);
3562
3563 kn->kn_ptr.p_proc = p;
3564 kn->kn_flagskn_kevent.flags |= EV_CLEAR0x0020; /* automatically set */
3565
3566 knlist_add(p->p_klist, kn, 0);
3567
3568 return (0);
3569}
3570
3571static void
3572filt_sigdetach(struct knote *kn)
3573{
3574 struct proc *p = kn->kn_ptr.p_proc;
3575
3576 knlist_remove(p->p_klist, kn, 0);
3577}
3578
3579/*
3580 * signal knotes are shared with proc knotes, so we apply a mask to
3581 * the hint in order to differentiate them from process hints. This
3582 * could be avoided by using a signal-specific knote list, but probably
3583 * isn't worth the trouble.
3584 */
3585static int
3586filt_signal(struct knote *kn, long hint)
3587{
3588
3589 if (hint & NOTE_SIGNAL0x08000000) {
3590 hint &= ~NOTE_SIGNAL0x08000000;
3591
3592 if (kn->kn_idkn_kevent.ident == hint)
3593 kn->kn_datakn_kevent.data++;
3594 }
3595 return (kn->kn_datakn_kevent.data != 0);
3596}
3597
3598struct sigacts *
3599sigacts_alloc(void)
3600{
3601 struct sigacts *ps;
3602
3603 ps = malloc(sizeof(struct sigacts), M_SUBPROC, M_WAITOK0x0002 | M_ZERO0x0100);
3604 refcount_init(&ps->ps_refcnt, 1);
3605 mtx_init(&ps->ps_mtx, "sigacts", NULL, MTX_DEF)_mtx_init(&(&ps->ps_mtx)->mtx_lock, "sigacts", (
(void *)0), 0x00000000)
;
3606 return (ps);
3607}
3608
3609void
3610sigacts_free(struct sigacts *ps)
3611{
3612
3613 if (refcount_release(&ps->ps_refcnt) == 0)
3614 return;
3615 mtx_destroy(&ps->ps_mtx)_mtx_destroy(&(&ps->ps_mtx)->mtx_lock);
3616 free(ps, M_SUBPROC);
3617}
3618
3619struct sigacts *
3620sigacts_hold(struct sigacts *ps)
3621{
3622
3623 refcount_acquire(&ps->ps_refcnt);
3624 return (ps);
3625}
3626
3627void
3628sigacts_copy(struct sigacts *dest, struct sigacts *src)
3629{
3630
3631 KASSERT(dest->ps_refcnt == 1, ("sigacts_copy to shared dest"))do { } while (0);
3632 mtx_lock(&src->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if ((((((
&src->ps_mtx))))->mtx_lock != 0x00000004 || !atomic_cmpset_long
(&(((((&src->ps_mtx)))))->mtx_lock, 0x00000004,
(_tid)))) __mtx_lock_sleep(&(((((&src->ps_mtx))))
)->mtx_lock, _tid, (((0))), ((((void *)0))), ((0))); else do
{ (void)0; do { if (__builtin_expect((sdt_lockstat___adaptive__acquire
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__acquire
->id, (uintptr_t) (((&src->ps_mtx))), (uintptr_t) 0
, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); } while (0)
;
3633 bcopy(src, dest, offsetof(struct sigacts, ps_refcnt)__builtin_offsetof(struct sigacts, ps_refcnt));
3634 mtx_unlock(&src->ps_mtx)do { uintptr_t _tid = (uintptr_t)((__curthread())); if (((((&
src->ps_mtx))))->lock_object.lo_data == 0) do { (void)0
; do { if (__builtin_expect((sdt_lockstat___adaptive__release
->id), 0)) (*sdt_probe_func)(sdt_lockstat___adaptive__release
->id, (uintptr_t) (((&src->ps_mtx))), (uintptr_t) 0
, (uintptr_t) 0, (uintptr_t) 0, (uintptr_t) 0); } while (0); }
while (0); if (((((&src->ps_mtx))))->mtx_lock != _tid
|| !atomic_cmpset_long(&(((((&src->ps_mtx)))))->
mtx_lock, (_tid), 0x00000004)) __mtx_unlock_sleep(&(((((&
src->ps_mtx)))))->mtx_lock, (((0))), ((((void *)0))), (
(0))); } while (0)
;
3635}
3636
3637int
3638sigacts_shared(struct sigacts *ps)
3639{
3640
3641 return (ps->ps_refcnt > 1);
3642}