Bug Summary

File:net/sctp/socket.c
Warning:line 5141, column 7
Copies out a struct with a union element with different sizes

Annotated Source Code

1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <[email protected]>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <[email protected]>
40 * Narasimha Budihal <[email protected]>
41 * Karl Knutson <[email protected]>
42 * Jon Grimm <[email protected]>
43 * Xingang Guo <[email protected]>
44 * Daisy Chang <[email protected]>
45 * Sridhar Samudrala <[email protected]>
46 * Inaky Perez-Gonzalez <[email protected]>
47 * Ardelle Fan <[email protected]>
48 * Ryan Layer <[email protected]>
49 * Anup Pemmaiah <[email protected]>
50 * Kevin Gao <[email protected]>
51 */
52
53#define pr_fmt(fmt)"sctp" ": " fmt KBUILD_MODNAME"sctp" ": " fmt
54
55#include <crypto/hash.h>
56#include <linux1/types.h>
57#include <linux1/kernel.h>
58#include <linux1/wait.h>
59#include <linux1/time.h>
60#include <linux1/ip.h>
61#include <linux1/capability.h>
62#include <linux1/fcntl.h>
63#include <linux1/poll.h>
64#include <linux1/init.h>
65#include <linux1/slab.h>
66#include <linux1/file.h>
67#include <linux1/compat.h>
68
69#include <net/ip.h>
70#include <net/icmp.h>
71#include <net/route.h>
72#include <net/ipv6.h>
73#include <net/inet_common.h>
74#include <net/busy_poll.h>
75
76#include <linux1/socket.h> /* for sa_family_t */
77#include <linux1/export.h>
78#include <net/sock.h>
79#include <net/sctp/sctp.h>
80#include <net/sctp/sm.h>
81
82/* Forward declarations for internal helper functions. */
83static int sctp_writeable(struct sock *sk);
84static void sctp_wfree(struct sk_buff *skb);
85static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89static int sctp_wait_for_accept(struct sock *sk, long timeo);
90static void sctp_wait_for_close(struct sock *sk, long timeo);
91static void sctp_destruct_sock(struct sock *sk);
92static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101static int sctp_autobind(struct sock *sk);
102static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105static int sctp_memory_pressure;
106static atomic_long_t sctp_memory_allocated;
107struct percpu_counter sctp_sockets_allocated;
108
109static void sctp_enter_memory_pressure(struct sock *sk)
110{
111 sctp_memory_pressure = 1;
112}
113
114
115/* Get the sndbuf space available at the time on the association. */
116static inlineinline __attribute__((no_instrument_function)) int sctp_wspace(struct sctp_association *asoc)
117{
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK1)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137}
138
139/* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148static inlineinline __attribute__((no_instrument_function)) void sctp_set_owner_w(struct sctp_chunk *chunk)
149{
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)((struct skb_shared_info *)(skb_end_pointer(chunk->skb)))->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk)((int)((unsigned long)(chunk->chunk_end) - (unsigned long)
(chunk->chunk_hdr) - sizeof(sctp_data_chunk_t)))
+
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169}
170
171/* Verify that this is a valid address. */
172static inlineinline __attribute__((no_instrument_function)) int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174{
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL22;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL((void *)0)))
184 return -EINVAL22;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL22;
188
189 return 0;
190}
191
192/* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196{
197 struct sctp_association *asoc = NULL((void *)0);
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP))) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED)__sctp_sstate((sk), (SCTP_SS_ESTABLISHED)) && !sctp_sstate(sk, CLOSING)__sctp_sstate((sk), (SCTP_SS_CLOSING)))
206 return NULL((void *)0);
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,({ const typeof( ((struct sctp_association *)0)->asocs ) *
__mptr = (sctp_sk(sk)->ep->asocs.next); (struct sctp_association
*)( (char *)__mptr - __builtin_offsetof(struct sctp_association
, asocs) );})
211 struct sctp_association, asocs)({ const typeof( ((struct sctp_association *)0)->asocs ) *
__mptr = (sctp_sk(sk)->ep->asocs.next); (struct sctp_association
*)( (char *)__mptr - __builtin_offsetof(struct sctp_association
, asocs) );})
;
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL((void *)0);
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL((void *)0);
225
226 return asoc;
227}
228
229/* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage__kernel_sockaddr_storage *addr,
235 sctp_assoc_t id)
236{
237 struct sctp_association *addr_asoc = NULL((void *)0), *id_asoc = NULL((void *)0);
238 struct sctp_transport *transport;
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240
241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 laddr,
243 &transport);
244
245 if (!addr_asoc)
246 return NULL((void *)0);
247
248 id_asoc = sctp_id2assoc(sk, id);
249 if (id_asoc && (id_asoc != addr_asoc))
250 return NULL((void *)0);
251
252 sctp_get_pf_specific(sk->sk_family__sk_common.skc_family)->addr_to_user(sctp_sk(sk),
253 (union sctp_addr *)addr);
254
255 return transport;
256}
257
258/* API 3.1.2 bind() - UDP Style Syntax
259 * The syntax of bind() is,
260 *
261 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
262 *
263 * sd - the socket descriptor returned by socket().
264 * addr - the address structure (struct sockaddr_in or struct
265 * sockaddr_in6 [RFC 2553]),
266 * addr_len - the size of the address structure.
267 */
268static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269{
270 int retval = 0;
271
272 lock_sock(sk);
273
274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, addr:%p, addr_len:%d\n"
), .lineno = 275, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, addr, addr_len
); } while (0)
275 addr, addr_len)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, addr:%p, addr_len:%d\n"
), .lineno = 275, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk, addr, addr_len
); } while (0)
;
276
277 /* Disallow binding twice. */
278 if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 addr_len);
281 else
282 retval = -EINVAL22;
283
284 release_sock(sk);
285
286 return retval;
287}
288
289static long sctp_get_port_local(struct sock *, union sctp_addr *);
290
291/* Verify this is a valid sockaddr. */
292static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 union sctp_addr *addr, int len)
294{
295 struct sctp_af *af;
296
297 /* Check minimum size. */
298 if (len < sizeof (struct sockaddr))
299 return NULL((void *)0);
300
301 /* V4 mapped address are really of AF_INET family */
302 if (addr->sa.sa_family == AF_INET610 &&
303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 if (!opt->pf->af_supported(AF_INET2, opt))
305 return NULL((void *)0);
306 } else {
307 /* Does this PF support this AF? */
308 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 return NULL((void *)0);
310 }
311
312 /* If we get this far, af is valid. */
313 af = sctp_get_af_specific(addr->sa.sa_family);
314
315 if (len < af->sockaddr_len)
316 return NULL((void *)0);
317
318 return af;
319}
320
321/* Bind a local address either to an endpoint or to an association. */
322static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323{
324 struct net *net = sock_net(sk);
325 struct sctp_sock *sp = sctp_sk(sk);
326 struct sctp_endpoint *ep = sp->ep;
327 struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 struct sctp_af *af;
329 unsigned short snum;
330 int ret = 0;
331
332 /* Common sockaddr verification. */
333 af = sctp_sockaddr_af(sp, addr, len);
334 if (!af) {
335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, newaddr:%p, len:%d EINVAL\n"
), .lineno = 336, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, newaddr:%p, len:%d EINVAL\n", __func__, sk, addr
, len); } while (0)
336 __func__, sk, addr, len)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, newaddr:%p, len:%d EINVAL\n"
), .lineno = 336, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, newaddr:%p, len:%d EINVAL\n", __func__, sk, addr
, len); } while (0)
;
337 return -EINVAL22;
338 }
339
340 snum = ntohs(addr->v4.sin_port)(__builtin_constant_p((__u16)(( __u16)(__be16)(addr->v4.sin_port
))) ? ((__u16)( (((__u16)(( __u16)(__be16)(addr->v4.sin_port
)) & (__u16)0x00ffU) << 8) | (((__u16)(( __u16)(__be16
)(addr->v4.sin_port)) & (__u16)0xff00U) >> 8))) :
__fswab16(( __u16)(__be16)(addr->v4.sin_port)))
;
341
342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n"
), .lineno = 343, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
__func__, sk, &addr->sa, bp->port, snum, len); } while
(0)
343 __func__, sk, &addr->sa, bp->port, snum, len)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n"
), .lineno = 343, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
__func__, sk, &addr->sa, bp->port, snum, len); } while
(0)
;
344
345 /* PF specific bind() address verification. */
346 if (!sp->pf->bind_verify(sp, addr))
347 return -EADDRNOTAVAIL99;
348
349 /* We must either be unbound, or bind to the same port.
350 * It's OK to allow 0 ports if we are already bound.
351 * We'll just inhert an already bound port in this case
352 */
353 if (bp->port) {
354 if (!snum)
355 snum = bp->port;
356 else if (snum != bp->port) {
357 pr_debug("%s: new port %d doesn't match existing port "do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: new port %d doesn't match existing port "
"%d\n"), .lineno = 358, .flags = 0, }; if ((descriptor.flags
& (1<<0))) __dynamic_pr_debug(&descriptor, "sctp"
": " "%s: new port %d doesn't match existing port " "%d\n", __func__
, snum, bp->port); } while (0)
358 "%d\n", __func__, snum, bp->port)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: new port %d doesn't match existing port "
"%d\n"), .lineno = 358, .flags = 0, }; if ((descriptor.flags
& (1<<0))) __dynamic_pr_debug(&descriptor, "sctp"
": " "%s: new port %d doesn't match existing port " "%d\n", __func__
, snum, bp->port); } while (0)
;
359 return -EINVAL22;
360 }
361 }
362
363 if (snum && snum < PROT_SOCK1024 &&
364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE10))
365 return -EACCES13;
366
367 /* See if the address matches any of the addresses we may have
368 * already bound before checking against other endpoints.
369 */
370 if (sctp_bind_addr_match(bp, addr, sp))
371 return -EINVAL22;
372
373 /* Make sure we are allowed to bind here.
374 * The function sctp_get_port_local() does duplicate address
375 * detection.
376 */
377 addr->v4.sin_port = htons(snum)(( __be16)(__builtin_constant_p((__u16)((snum))) ? ((__u16)( (
((__u16)((snum)) & (__u16)0x00ffU) << 8) | (((__u16
)((snum)) & (__u16)0xff00U) >> 8))) : __fswab16((snum
))))
;
378 if ((ret = sctp_get_port_local(sk, addr))) {
379 return -EADDRINUSE98;
380 }
381
382 /* Refresh ephemeral port. */
383 if (!bp->port)
384 bp->port = inet_sk(sk)->inet_numsk.__sk_common.skc_num;
385
386 /* Add the address to the bind address list.
387 * Use GFP_ATOMIC since BHs will be disabled.
388 */
389 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
390 SCTP_ADDR_SRC, GFP_ATOMIC((( gfp_t)0x20u)|(( gfp_t)0x80000u)|(( gfp_t)0x2000000u)));
391
392 /* Copy back into socket for getsockname() use. */
393 if (!ret) {
394 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num)(( __be16)(__builtin_constant_p((__u16)((inet_sk(sk)->sk.__sk_common
.skc_num))) ? ((__u16)( (((__u16)((inet_sk(sk)->sk.__sk_common
.skc_num)) & (__u16)0x00ffU) << 8) | (((__u16)((inet_sk
(sk)->sk.__sk_common.skc_num)) & (__u16)0xff00U) >>
8))) : __fswab16((inet_sk(sk)->sk.__sk_common.skc_num))))
;
395 sp->pf->to_sk_saddr(addr, sk);
396 }
397
398 return ret;
399}
400
401 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
402 *
403 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
404 * at any one time. If a sender, after sending an ASCONF chunk, decides
405 * it needs to transfer another ASCONF Chunk, it MUST wait until the
406 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
407 * subsequent ASCONF. Note this restriction binds each side, so at any
408 * time two ASCONF may be in-transit on any given association (one sent
409 * from each endpoint).
410 */
411static int sctp_send_asconf(struct sctp_association *asoc,
412 struct sctp_chunk *chunk)
413{
414 struct net *net = sock_net(asoc->base.sk);
415 int retval = 0;
416
417 /* If there is an outstanding ASCONF chunk, queue it for later
418 * transmission.
419 */
420 if (asoc->addip_last_asconf) {
421 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
422 goto out;
423 }
424
425 /* Hold the chunk until an ASCONF_ACK is received. */
426 sctp_chunk_hold(chunk);
427 retval = sctp_primitive_ASCONF(net, asoc, chunk);
428 if (retval)
429 sctp_chunk_free(chunk);
430 else
431 asoc->addip_last_asconf = chunk;
432
433out:
434 return retval;
435}
436
437/* Add a list of addresses as bind addresses to local endpoint or
438 * association.
439 *
440 * Basically run through each address specified in the addrs/addrcnt
441 * array/length pair, determine if it is IPv6 or IPv4 and call
442 * sctp_do_bind() on it.
443 *
444 * If any of them fails, then the operation will be reversed and the
445 * ones that were added will be removed.
446 *
447 * Only sctp_setsockopt_bindx() is supposed to call this function.
448 */
449static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
450{
451 int cnt;
452 int retval = 0;
453 void *addr_buf;
454 struct sockaddr *sa_addr;
455 struct sctp_af *af;
456
457 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, addrs:%p, addrcnt:%d\n"
), .lineno = 458, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt
); } while (0)
458 addrs, addrcnt)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, addrs:%p, addrcnt:%d\n"
), .lineno = 458, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt
); } while (0)
;
459
460 addr_buf = addrs;
461 for (cnt = 0; cnt < addrcnt; cnt++) {
462 /* The list may contain either IPv4 or IPv6 address;
463 * determine the address length for walking thru the list.
464 */
465 sa_addr = addr_buf;
466 af = sctp_get_af_specific(sa_addr->sa_family);
467 if (!af) {
468 retval = -EINVAL22;
469 goto err_bindx_add;
470 }
471
472 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
473 af->sockaddr_len);
474
475 addr_buf += af->sockaddr_len;
476
477err_bindx_add:
478 if (retval < 0) {
479 /* Failed. Cleanup the ones that have been added */
480 if (cnt > 0)
481 sctp_bindx_rem(sk, addrs, cnt);
482 return retval;
483 }
484 }
485
486 return retval;
487}
488
489/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
490 * associations that are part of the endpoint indicating that a list of local
491 * addresses are added to the endpoint.
492 *
493 * If any of the addresses is already in the bind address list of the
494 * association, we do not send the chunk for that association. But it will not
495 * affect other associations.
496 *
497 * Only sctp_setsockopt_bindx() is supposed to call this function.
498 */
499static int sctp_send_asconf_add_ip(struct sock *sk,
500 struct sockaddr *addrs,
501 int addrcnt)
502{
503 struct net *net = sock_net(sk);
504 struct sctp_sock *sp;
505 struct sctp_endpoint *ep;
506 struct sctp_association *asoc;
507 struct sctp_bind_addr *bp;
508 struct sctp_chunk *chunk;
509 struct sctp_sockaddr_entry *laddr;
510 union sctp_addr *addr;
511 union sctp_addr saveaddr;
512 void *addr_buf;
513 struct sctp_af *af;
514 struct list_head *p;
515 int i;
516 int retval = 0;
517
518 if (!net->sctp.addip_enable)
519 return retval;
520
521 sp = sctp_sk(sk);
522 ep = sp->ep;
523
524 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, addrs:%p, addrcnt:%d\n"
), .lineno = 525, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt
); } while (0)
525 __func__, sk, addrs, addrcnt)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, addrs:%p, addrcnt:%d\n"
), .lineno = 525, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt
); } while (0)
;
526
527 list_for_each_entry(asoc, &ep->asocs, asocs)for (asoc = ({ const typeof( ((typeof(*asoc) *)0)->asocs )
*__mptr = ((&ep->asocs)->next); (typeof(*asoc) *)(
(char *)__mptr - __builtin_offsetof(typeof(*asoc), asocs) );
}); &asoc->asocs != (&ep->asocs); asoc = ({ const
typeof( ((typeof(*(asoc)) *)0)->asocs ) *__mptr = ((asoc)
->asocs.next); (typeof(*(asoc)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(asoc)), asocs) );}))
{
528 if (!asoc->peer.asconf_capable)
529 continue;
530
531 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
532 continue;
533
534 if (!sctp_state(asoc, ESTABLISHED)__sctp_state((asoc), (SCTP_STATE_ESTABLISHED)))
535 continue;
536
537 /* Check if any address in the packed array of addresses is
538 * in the bind address list of the association. If so,
539 * do not send the asconf chunk to its peer, but continue with
540 * other associations.
541 */
542 addr_buf = addrs;
543 for (i = 0; i < addrcnt; i++) {
544 addr = addr_buf;
545 af = sctp_get_af_specific(addr->v4.sin_family);
546 if (!af) {
547 retval = -EINVAL22;
548 goto out;
549 }
550
551 if (sctp_assoc_lookup_laddr(asoc, addr))
552 break;
553
554 addr_buf += af->sockaddr_len;
555 }
556 if (i < addrcnt)
557 continue;
558
559 /* Use the first valid address in bind addr list of
560 * association as Address Parameter of ASCONF CHUNK.
561 */
562 bp = &asoc->base.bind_addr;
563 p = bp->address_list.next;
564 laddr = list_entry(p, struct sctp_sockaddr_entry, list)({ const typeof( ((struct sctp_sockaddr_entry *)0)->list )
*__mptr = (p); (struct sctp_sockaddr_entry *)( (char *)__mptr
- __builtin_offsetof(struct sctp_sockaddr_entry, list) );})
;
565 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
566 addrcnt, SCTP_PARAM_ADD_IP);
567 if (!chunk) {
568 retval = -ENOMEM12;
569 goto out;
570 }
571
572 /* Add the new addresses to the bind address list with
573 * use_as_src set to 0.
574 */
575 addr_buf = addrs;
576 for (i = 0; i < addrcnt; i++) {
577 addr = addr_buf;
578 af = sctp_get_af_specific(addr->v4.sin_family);
579 memcpy(&saveaddr, addr, af->sockaddr_len)({ size_t __len = (af->sockaddr_len); void *__ret; if (__builtin_constant_p
(af->sockaddr_len) && __len >= 64) __ret = __memcpy
((&saveaddr), (addr), __len); else __ret = __builtin_memcpy
((&saveaddr), (addr), __len); __ret; })
;
580 retval = sctp_add_bind_addr(bp, &saveaddr,
581 sizeof(saveaddr),
582 SCTP_ADDR_NEW, GFP_ATOMIC((( gfp_t)0x20u)|(( gfp_t)0x80000u)|(( gfp_t)0x2000000u)));
583 addr_buf += af->sockaddr_len;
584 }
585 if (asoc->src_out_of_asoc_ok) {
586 struct sctp_transport *trans;
587
588 list_for_each_entry(trans,for (trans = ({ const typeof( ((typeof(*trans) *)0)->transports
) *__mptr = ((&asoc->peer.transport_addr_list)->next
); (typeof(*trans) *)( (char *)__mptr - __builtin_offsetof(typeof
(*trans), transports) );}); &trans->transports != (&
asoc->peer.transport_addr_list); trans = ({ const typeof( (
(typeof(*(trans)) *)0)->transports ) *__mptr = ((trans)->
transports.next); (typeof(*(trans)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(trans)), transports) );}))
589 &asoc->peer.transport_addr_list, transports)for (trans = ({ const typeof( ((typeof(*trans) *)0)->transports
) *__mptr = ((&asoc->peer.transport_addr_list)->next
); (typeof(*trans) *)( (char *)__mptr - __builtin_offsetof(typeof
(*trans), transports) );}); &trans->transports != (&
asoc->peer.transport_addr_list); trans = ({ const typeof( (
(typeof(*(trans)) *)0)->transports ) *__mptr = ((trans)->
transports.next); (typeof(*(trans)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(trans)), transports) );}))
{
590 /* Clear the source and route cache */
591 dst_release(trans->dst);
592 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,({ typeof(4*asoc->pathmtu) __UNIQUE_ID_min1_68 = (4*asoc->
pathmtu); typeof(({ __u32 __UNIQUE_ID_min1_66 = (2*asoc->pathmtu
); __u32 __UNIQUE_ID_min2_67 = (4380); (void) (&__UNIQUE_ID_min1_66
== &__UNIQUE_ID_min2_67); __UNIQUE_ID_min1_66 > __UNIQUE_ID_min2_67
? __UNIQUE_ID_min1_66 : __UNIQUE_ID_min2_67; })) __UNIQUE_ID_min2_69
= (({ __u32 __UNIQUE_ID_min1_66 = (2*asoc->pathmtu); __u32
__UNIQUE_ID_min2_67 = (4380); (void) (&__UNIQUE_ID_min1_66
== &__UNIQUE_ID_min2_67); __UNIQUE_ID_min1_66 > __UNIQUE_ID_min2_67
? __UNIQUE_ID_min1_66 : __UNIQUE_ID_min2_67; })); (void) (&
__UNIQUE_ID_min1_68 == &__UNIQUE_ID_min2_69); __UNIQUE_ID_min1_68
< __UNIQUE_ID_min2_69 ? __UNIQUE_ID_min1_68 : __UNIQUE_ID_min2_69
; })
593 2*asoc->pathmtu, 4380))({ typeof(4*asoc->pathmtu) __UNIQUE_ID_min1_68 = (4*asoc->
pathmtu); typeof(({ __u32 __UNIQUE_ID_min1_66 = (2*asoc->pathmtu
); __u32 __UNIQUE_ID_min2_67 = (4380); (void) (&__UNIQUE_ID_min1_66
== &__UNIQUE_ID_min2_67); __UNIQUE_ID_min1_66 > __UNIQUE_ID_min2_67
? __UNIQUE_ID_min1_66 : __UNIQUE_ID_min2_67; })) __UNIQUE_ID_min2_69
= (({ __u32 __UNIQUE_ID_min1_66 = (2*asoc->pathmtu); __u32
__UNIQUE_ID_min2_67 = (4380); (void) (&__UNIQUE_ID_min1_66
== &__UNIQUE_ID_min2_67); __UNIQUE_ID_min1_66 > __UNIQUE_ID_min2_67
? __UNIQUE_ID_min1_66 : __UNIQUE_ID_min2_67; })); (void) (&
__UNIQUE_ID_min1_68 == &__UNIQUE_ID_min2_69); __UNIQUE_ID_min1_68
< __UNIQUE_ID_min2_69 ? __UNIQUE_ID_min1_68 : __UNIQUE_ID_min2_69
; })
;
594 trans->ssthresh = asoc->peer.i.a_rwnd;
595 trans->rto = asoc->rto_initial;
596 sctp_max_rto(asoc, trans);
597 trans->rtt = trans->srtt = trans->rttvar = 0;
598 sctp_transport_route(trans, NULL((void *)0),
599 sctp_sk(asoc->base.sk));
600 }
601 }
602 retval = sctp_send_asconf(asoc, chunk);
603 }
604
605out:
606 return retval;
607}
608
609/* Remove a list of addresses from bind addresses list. Do not remove the
610 * last address.
611 *
612 * Basically run through each address specified in the addrs/addrcnt
613 * array/length pair, determine if it is IPv6 or IPv4 and call
614 * sctp_del_bind() on it.
615 *
616 * If any of them fails, then the operation will be reversed and the
617 * ones that were removed will be added back.
618 *
619 * At least one address has to be left; if only one address is
620 * available, the operation will return -EBUSY.
621 *
622 * Only sctp_setsockopt_bindx() is supposed to call this function.
623 */
624static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
625{
626 struct sctp_sock *sp = sctp_sk(sk);
627 struct sctp_endpoint *ep = sp->ep;
628 int cnt;
629 struct sctp_bind_addr *bp = &ep->base.bind_addr;
630 int retval = 0;
631 void *addr_buf;
632 union sctp_addr *sa_addr;
633 struct sctp_af *af;
634
635 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, addrs:%p, addrcnt:%d\n"
), .lineno = 636, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt
); } while (0)
636 __func__, sk, addrs, addrcnt)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, addrs:%p, addrcnt:%d\n"
), .lineno = 636, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt
); } while (0)
;
637
638 addr_buf = addrs;
639 for (cnt = 0; cnt < addrcnt; cnt++) {
640 /* If the bind address list is empty or if there is only one
641 * bind address, there is nothing more to be removed (we need
642 * at least one address here).
643 */
644 if (list_empty(&bp->address_list) ||
645 (sctp_list_single_entry(&bp->address_list))) {
646 retval = -EBUSY16;
647 goto err_bindx_rem;
648 }
649
650 sa_addr = addr_buf;
651 af = sctp_get_af_specific(sa_addr->sa.sa_family);
652 if (!af) {
653 retval = -EINVAL22;
654 goto err_bindx_rem;
655 }
656
657 if (!af->addr_valid(sa_addr, sp, NULL((void *)0))) {
658 retval = -EADDRNOTAVAIL99;
659 goto err_bindx_rem;
660 }
661
662 if (sa_addr->v4.sin_port &&
663 sa_addr->v4.sin_port != htons(bp->port)(( __be16)(__builtin_constant_p((__u16)((bp->port))) ? ((__u16
)( (((__u16)((bp->port)) & (__u16)0x00ffU) << 8)
| (((__u16)((bp->port)) & (__u16)0xff00U) >> 8)
)) : __fswab16((bp->port))))
) {
664 retval = -EINVAL22;
665 goto err_bindx_rem;
666 }
667
668 if (!sa_addr->v4.sin_port)
669 sa_addr->v4.sin_port = htons(bp->port)(( __be16)(__builtin_constant_p((__u16)((bp->port))) ? ((__u16
)( (((__u16)((bp->port)) & (__u16)0x00ffU) << 8)
| (((__u16)((bp->port)) & (__u16)0xff00U) >> 8)
)) : __fswab16((bp->port))))
;
670
671 /* FIXME - There is probably a need to check if sk->sk_saddr and
672 * sk->sk_rcv_addr are currently set to one of the addresses to
673 * be removed. This is something which needs to be looked into
674 * when we are fixing the outstanding issues with multi-homing
675 * socket routing and failover schemes. Refer to comments in
676 * sctp_do_bind(). -daisy
677 */
678 retval = sctp_del_bind_addr(bp, sa_addr);
679
680 addr_buf += af->sockaddr_len;
681err_bindx_rem:
682 if (retval < 0) {
683 /* Failed. Add the ones that has been removed back */
684 if (cnt > 0)
685 sctp_bindx_add(sk, addrs, cnt);
686 return retval;
687 }
688 }
689
690 return retval;
691}
692
693/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
694 * the associations that are part of the endpoint indicating that a list of
695 * local addresses are removed from the endpoint.
696 *
697 * If any of the addresses is already in the bind address list of the
698 * association, we do not send the chunk for that association. But it will not
699 * affect other associations.
700 *
701 * Only sctp_setsockopt_bindx() is supposed to call this function.
702 */
703static int sctp_send_asconf_del_ip(struct sock *sk,
704 struct sockaddr *addrs,
705 int addrcnt)
706{
707 struct net *net = sock_net(sk);
708 struct sctp_sock *sp;
709 struct sctp_endpoint *ep;
710 struct sctp_association *asoc;
711 struct sctp_transport *transport;
712 struct sctp_bind_addr *bp;
713 struct sctp_chunk *chunk;
714 union sctp_addr *laddr;
715 void *addr_buf;
716 struct sctp_af *af;
717 struct sctp_sockaddr_entry *saddr;
718 int i;
719 int retval = 0;
720 int stored = 0;
721
722 chunk = NULL((void *)0);
723 if (!net->sctp.addip_enable)
724 return retval;
725
726 sp = sctp_sk(sk);
727 ep = sp->ep;
728
729 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, addrs:%p, addrcnt:%d\n"
), .lineno = 730, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt
); } while (0)
730 __func__, sk, addrs, addrcnt)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, addrs:%p, addrcnt:%d\n"
), .lineno = 730, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk, addrs, addrcnt
); } while (0)
;
731
732 list_for_each_entry(asoc, &ep->asocs, asocs)for (asoc = ({ const typeof( ((typeof(*asoc) *)0)->asocs )
*__mptr = ((&ep->asocs)->next); (typeof(*asoc) *)(
(char *)__mptr - __builtin_offsetof(typeof(*asoc), asocs) );
}); &asoc->asocs != (&ep->asocs); asoc = ({ const
typeof( ((typeof(*(asoc)) *)0)->asocs ) *__mptr = ((asoc)
->asocs.next); (typeof(*(asoc)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(asoc)), asocs) );}))
{
733
734 if (!asoc->peer.asconf_capable)
735 continue;
736
737 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
738 continue;
739
740 if (!sctp_state(asoc, ESTABLISHED)__sctp_state((asoc), (SCTP_STATE_ESTABLISHED)))
741 continue;
742
743 /* Check if any address in the packed array of addresses is
744 * not present in the bind address list of the association.
745 * If so, do not send the asconf chunk to its peer, but
746 * continue with other associations.
747 */
748 addr_buf = addrs;
749 for (i = 0; i < addrcnt; i++) {
750 laddr = addr_buf;
751 af = sctp_get_af_specific(laddr->v4.sin_family);
752 if (!af) {
753 retval = -EINVAL22;
754 goto out;
755 }
756
757 if (!sctp_assoc_lookup_laddr(asoc, laddr))
758 break;
759
760 addr_buf += af->sockaddr_len;
761 }
762 if (i < addrcnt)
763 continue;
764
765 /* Find one address in the association's bind address list
766 * that is not in the packed array of addresses. This is to
767 * make sure that we do not delete all the addresses in the
768 * association.
769 */
770 bp = &asoc->base.bind_addr;
771 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
772 addrcnt, sp);
773 if ((laddr == NULL((void *)0)) && (addrcnt == 1)) {
774 if (asoc->asconf_addr_del_pending)
775 continue;
776 asoc->asconf_addr_del_pending =
777 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC((( gfp_t)0x20u)|(( gfp_t)0x80000u)|(( gfp_t)0x2000000u)));
778 if (asoc->asconf_addr_del_pending == NULL((void *)0)) {
779 retval = -ENOMEM12;
780 goto out;
781 }
782 asoc->asconf_addr_del_pending->sa.sa_family =
783 addrs->sa_family;
784 asoc->asconf_addr_del_pending->v4.sin_port =
785 htons(bp->port)(( __be16)(__builtin_constant_p((__u16)((bp->port))) ? ((__u16
)( (((__u16)((bp->port)) & (__u16)0x00ffU) << 8)
| (((__u16)((bp->port)) & (__u16)0xff00U) >> 8)
)) : __fswab16((bp->port))))
;
786 if (addrs->sa_family == AF_INET2) {
787 struct sockaddr_in *sin;
788
789 sin = (struct sockaddr_in *)addrs;
790 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
791 } else if (addrs->sa_family == AF_INET610) {
792 struct sockaddr_in6 *sin6;
793
794 sin6 = (struct sockaddr_in6 *)addrs;
795 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
796 }
797
798 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: keep the last address asoc:%p %pISc at %p\n"
), .lineno = 800, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: keep the last address asoc:%p %pISc at %p\n", __func__,
asoc, &asoc->asconf_addr_del_pending->sa, asoc->
asconf_addr_del_pending); } while (0)
799 __func__, asoc, &asoc->asconf_addr_del_pending->sa,do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: keep the last address asoc:%p %pISc at %p\n"
), .lineno = 800, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: keep the last address asoc:%p %pISc at %p\n", __func__,
asoc, &asoc->asconf_addr_del_pending->sa, asoc->
asconf_addr_del_pending); } while (0)
800 asoc->asconf_addr_del_pending)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: keep the last address asoc:%p %pISc at %p\n"
), .lineno = 800, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: keep the last address asoc:%p %pISc at %p\n", __func__,
asoc, &asoc->asconf_addr_del_pending->sa, asoc->
asconf_addr_del_pending); } while (0)
;
801
802 asoc->src_out_of_asoc_ok = 1;
803 stored = 1;
804 goto skip_mkasconf;
805 }
806
807 if (laddr == NULL((void *)0))
808 return -EINVAL22;
809
810 /* We do not need RCU protection throughout this loop
811 * because this is done under a socket lock from the
812 * setsockopt call.
813 */
814 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
815 SCTP_PARAM_DEL_IP);
816 if (!chunk) {
817 retval = -ENOMEM12;
818 goto out;
819 }
820
821skip_mkasconf:
822 /* Reset use_as_src flag for the addresses in the bind address
823 * list that are to be deleted.
824 */
825 addr_buf = addrs;
826 for (i = 0; i < addrcnt; i++) {
827 laddr = addr_buf;
828 af = sctp_get_af_specific(laddr->v4.sin_family);
829 list_for_each_entry(saddr, &bp->address_list, list)for (saddr = ({ const typeof( ((typeof(*saddr) *)0)->list )
*__mptr = ((&bp->address_list)->next); (typeof(*saddr
) *)( (char *)__mptr - __builtin_offsetof(typeof(*saddr), list
) );}); &saddr->list != (&bp->address_list); saddr
= ({ const typeof( ((typeof(*(saddr)) *)0)->list ) *__mptr
= ((saddr)->list.next); (typeof(*(saddr)) *)( (char *)__mptr
- __builtin_offsetof(typeof(*(saddr)), list) );}))
{
830 if (sctp_cmp_addr_exact(&saddr->a, laddr))
831 saddr->state = SCTP_ADDR_DEL;
832 }
833 addr_buf += af->sockaddr_len;
834 }
835
836 /* Update the route and saddr entries for all the transports
837 * as some of the addresses in the bind address list are
838 * about to be deleted and cannot be used as source addresses.
839 */
840 list_for_each_entry(transport, &asoc->peer.transport_addr_list,for (transport = ({ const typeof( ((typeof(*transport) *)0)->
transports ) *__mptr = ((&asoc->peer.transport_addr_list
)->next); (typeof(*transport) *)( (char *)__mptr - __builtin_offsetof
(typeof(*transport), transports) );}); &transport->transports
!= (&asoc->peer.transport_addr_list); transport = ({ const
typeof( ((typeof(*(transport)) *)0)->transports ) *__mptr
= ((transport)->transports.next); (typeof(*(transport)) *
)( (char *)__mptr - __builtin_offsetof(typeof(*(transport)), transports
) );}))
841 transports)for (transport = ({ const typeof( ((typeof(*transport) *)0)->
transports ) *__mptr = ((&asoc->peer.transport_addr_list
)->next); (typeof(*transport) *)( (char *)__mptr - __builtin_offsetof
(typeof(*transport), transports) );}); &transport->transports
!= (&asoc->peer.transport_addr_list); transport = ({ const
typeof( ((typeof(*(transport)) *)0)->transports ) *__mptr
= ((transport)->transports.next); (typeof(*(transport)) *
)( (char *)__mptr - __builtin_offsetof(typeof(*(transport)), transports
) );}))
{
842 dst_release(transport->dst);
843 sctp_transport_route(transport, NULL((void *)0),
844 sctp_sk(asoc->base.sk));
845 }
846
847 if (stored)
848 /* We don't need to transmit ASCONF */
849 continue;
850 retval = sctp_send_asconf(asoc, chunk);
851 }
852out:
853 return retval;
854}
855
856/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
857int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
858{
859 struct sock *sk = sctp_opt2sk(sp);
860 union sctp_addr *addr;
861 struct sctp_af *af;
862
863 /* It is safe to write port space in caller. */
864 addr = &addrw->a;
865 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port)(( __be16)(__builtin_constant_p((__u16)((sp->ep->base.bind_addr
.port))) ? ((__u16)( (((__u16)((sp->ep->base.bind_addr.
port)) & (__u16)0x00ffU) << 8) | (((__u16)((sp->
ep->base.bind_addr.port)) & (__u16)0xff00U) >> 8
))) : __fswab16((sp->ep->base.bind_addr.port))))
;
866 af = sctp_get_af_specific(addr->sa.sa_family);
867 if (!af)
868 return -EINVAL22;
869 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
870 return -EINVAL22;
871
872 if (addrw->state == SCTP_ADDR_NEW)
873 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
874 else
875 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
876}
877
878/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
879 *
880 * API 8.1
881 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
882 * int flags);
883 *
884 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
885 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
886 * or IPv6 addresses.
887 *
888 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
889 * Section 3.1.2 for this usage.
890 *
891 * addrs is a pointer to an array of one or more socket addresses. Each
892 * address is contained in its appropriate structure (i.e. struct
893 * sockaddr_in or struct sockaddr_in6) the family of the address type
894 * must be used to distinguish the address length (note that this
895 * representation is termed a "packed array" of addresses). The caller
896 * specifies the number of addresses in the array with addrcnt.
897 *
898 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
899 * -1, and sets errno to the appropriate error code.
900 *
901 * For SCTP, the port given in each socket address must be the same, or
902 * sctp_bindx() will fail, setting errno to EINVAL.
903 *
904 * The flags parameter is formed from the bitwise OR of zero or more of
905 * the following currently defined flags:
906 *
907 * SCTP_BINDX_ADD_ADDR
908 *
909 * SCTP_BINDX_REM_ADDR
910 *
911 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
912 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
913 * addresses from the association. The two flags are mutually exclusive;
914 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
915 * not remove all addresses from an association; sctp_bindx() will
916 * reject such an attempt with EINVAL.
917 *
918 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
919 * additional addresses with an endpoint after calling bind(). Or use
920 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
921 * socket is associated with so that no new association accepted will be
922 * associated with those addresses. If the endpoint supports dynamic
923 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
924 * endpoint to send the appropriate message to the peer to change the
925 * peers address lists.
926 *
927 * Adding and removing addresses from a connected association is
928 * optional functionality. Implementations that do not support this
929 * functionality should return EOPNOTSUPP.
930 *
931 * Basically do nothing but copying the addresses from user to kernel
932 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
933 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
934 * from userspace.
935 *
936 * We don't use copy_from_user() for optimization: we first do the
937 * sanity checks (buffer size -fast- and access check-healthy
938 * pointer); if all of those succeed, then we can alloc the memory
939 * (expensive operation) needed to copy the data to kernel. Then we do
940 * the copying without checking the user space area
941 * (__copy_from_user()).
942 *
943 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
944 * it.
945 *
946 * sk The sk of the socket
947 * addrs The pointer to the addresses in user land
948 * addrssize Size of the addrs buffer
949 * op Operation to perform (add or remove, see the flags of
950 * sctp_bindx)
951 *
952 * Returns 0 if ok, <0 errno code on error.
953 */
954static int sctp_setsockopt_bindx(struct sock *sk,
955 struct sockaddr __user *addrs,
956 int addrs_size, int op)
957{
958 struct sockaddr *kaddrs;
959 int err;
960 int addrcnt = 0;
961 int walk_size = 0;
962 struct sockaddr *sa_addr;
963 void *addr_buf;
964 struct sctp_af *af;
965
966 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n"
), .lineno = 967, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", __func__, sk, addrs
, addrs_size, op); } while (0)
967 __func__, sk, addrs, addrs_size, op)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n"
), .lineno = 967, .flags = 0, }; if ((descriptor.flags & (
1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p addrs:%p addrs_size:%d opt:%d\n", __func__, sk, addrs
, addrs_size, op); } while (0)
;
968
969 if (unlikely(addrs_size <= 0)(addrs_size <= 0))
970 return -EINVAL22;
971
972 /* Check the user passed a healthy pointer. */
973 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))(!(!({ (void)0; __chk_range_not_ok((unsigned long )(addrs), addrs_size
, (get_current()->thread.addr_limit.seg)); })))
)
974 return -EFAULT14;
975
976 /* Alloc space for the address array in kernel memory. */
977 kaddrs = kmalloc(addrs_size, GFP_USER((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u) | (( gfp_t)0x20000u))
| __GFP_NOWARN(( gfp_t)0x200u));
978 if (unlikely(!kaddrs)(!kaddrs))
979 return -ENOMEM12;
980
981 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
982 kfree(kaddrs);
983 return -EFAULT14;
984 }
985
986 /* Walk through the addrs buffer and count the number of addresses. */
987 addr_buf = kaddrs;
988 while (walk_size < addrs_size) {
989 if (walk_size + sizeof(sa_family_t) > addrs_size) {
990 kfree(kaddrs);
991 return -EINVAL22;
992 }
993
994 sa_addr = addr_buf;
995 af = sctp_get_af_specific(sa_addr->sa_family);
996
997 /* If the address family is not supported or if this address
998 * causes the address buffer to overflow return EINVAL.
999 */
1000 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1001 kfree(kaddrs);
1002 return -EINVAL22;
1003 }
1004 addrcnt++;
1005 addr_buf += af->sockaddr_len;
1006 walk_size += af->sockaddr_len;
1007 }
1008
1009 /* Do the work. */
1010 switch (op) {
1011 case SCTP_BINDX_ADD_ADDR0x01:
1012 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1013 if (err)
1014 goto out;
1015 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1016 break;
1017
1018 case SCTP_BINDX_REM_ADDR0x02:
1019 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1020 if (err)
1021 goto out;
1022 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1023 break;
1024
1025 default:
1026 err = -EINVAL22;
1027 break;
1028 }
1029
1030out:
1031 kfree(kaddrs);
1032
1033 return err;
1034}
1035
1036/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1037 *
1038 * Common routine for handling connect() and sctp_connectx().
1039 * Connect will come in with just a single address.
1040 */
1041static int __sctp_connect(struct sock *sk,
1042 struct sockaddr *kaddrs,
1043 int addrs_size,
1044 sctp_assoc_t *assoc_id)
1045{
1046 struct net *net = sock_net(sk);
1047 struct sctp_sock *sp;
1048 struct sctp_endpoint *ep;
1049 struct sctp_association *asoc = NULL((void *)0);
1050 struct sctp_association *asoc2;
1051 struct sctp_transport *transport;
1052 union sctp_addr to;
1053 sctp_scope_t scope;
1054 long timeo;
1055 int err = 0;
1056 int addrcnt = 0;
1057 int walk_size = 0;
1058 union sctp_addr *sa_addr = NULL((void *)0);
1059 void *addr_buf;
1060 unsigned short port;
1061 unsigned int f_flags = 0;
1062
1063 sp = sctp_sk(sk);
1064 ep = sp->ep;
1065
1066 /* connect() cannot be done on a socket that is already in ESTABLISHED
1067 * state - UDP-style peeled off socket or a TCP-style socket that
1068 * is already connected.
1069 * It cannot be done even on a TCP-style listening socket.
1070 */
1071 if (sctp_sstate(sk, ESTABLISHED)__sctp_sstate((sk), (SCTP_SS_ESTABLISHED)) || sctp_sstate(sk, CLOSING)__sctp_sstate((sk), (SCTP_SS_CLOSING)) ||
1072 (sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)) && sctp_sstate(sk, LISTENING)__sctp_sstate((sk), (SCTP_SS_LISTENING)))) {
1073 err = -EISCONN106;
1074 goto out_free;
1075 }
1076
1077 /* Walk through the addrs buffer and count the number of addresses. */
1078 addr_buf = kaddrs;
1079 while (walk_size < addrs_size) {
1080 struct sctp_af *af;
1081
1082 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1083 err = -EINVAL22;
1084 goto out_free;
1085 }
1086
1087 sa_addr = addr_buf;
1088 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1089
1090 /* If the address family is not supported or if this address
1091 * causes the address buffer to overflow return EINVAL.
1092 */
1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1094 err = -EINVAL22;
1095 goto out_free;
1096 }
1097
1098 port = ntohs(sa_addr->v4.sin_port)(__builtin_constant_p((__u16)(( __u16)(__be16)(sa_addr->v4
.sin_port))) ? ((__u16)( (((__u16)(( __u16)(__be16)(sa_addr->
v4.sin_port)) & (__u16)0x00ffU) << 8) | (((__u16)((
__u16)(__be16)(sa_addr->v4.sin_port)) & (__u16)0xff00U
) >> 8))) : __fswab16(( __u16)(__be16)(sa_addr->v4.sin_port
)))
;
1099
1100 /* Save current address so we can work with it */
1101 memcpy(&to, sa_addr, af->sockaddr_len)({ size_t __len = (af->sockaddr_len); void *__ret; if (__builtin_constant_p
(af->sockaddr_len) && __len >= 64) __ret = __memcpy
((&to), (sa_addr), __len); else __ret = __builtin_memcpy(
(&to), (sa_addr), __len); __ret; })
;
1102
1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1104 if (err)
1105 goto out_free;
1106
1107 /* Make sure the destination port is correctly set
1108 * in all addresses.
1109 */
1110 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1111 err = -EINVAL22;
1112 goto out_free;
1113 }
1114
1115 /* Check if there already is a matching association on the
1116 * endpoint (other than the one created here).
1117 */
1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1119 if (asoc2 && asoc2 != asoc) {
1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1121 err = -EISCONN106;
1122 else
1123 err = -EALREADY114;
1124 goto out_free;
1125 }
1126
1127 /* If we could not find a matching association on the endpoint,
1128 * make sure that there is no peeled-off association matching
1129 * the peer address even on another socket.
1130 */
1131 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1132 err = -EADDRNOTAVAIL99;
1133 goto out_free;
1134 }
1135
1136 if (!asoc) {
1137 /* If a bind() or sctp_bindx() is not called prior to
1138 * an sctp_connectx() call, the system picks an
1139 * ephemeral port and will choose an address set
1140 * equivalent to binding with a wildcard address.
1141 */
1142 if (!ep->base.bind_addr.port) {
1143 if (sctp_autobind(sk)) {
1144 err = -EAGAIN11;
1145 goto out_free;
1146 }
1147 } else {
1148 /*
1149 * If an unprivileged user inherits a 1-many
1150 * style socket with open associations on a
1151 * privileged port, it MAY be permitted to
1152 * accept new associations, but it SHOULD NOT
1153 * be permitted to open new associations.
1154 */
1155 if (ep->base.bind_addr.port < PROT_SOCK1024 &&
1156 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE10)) {
1157 err = -EACCES13;
1158 goto out_free;
1159 }
1160 }
1161
1162 scope = sctp_scope(&to);
1163 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u))
);
1164 if (!asoc) {
1165 err = -ENOMEM12;
1166 goto out_free;
1167 }
1168
1169 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1170 GFP_KERNEL((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u))
);
1171 if (err < 0) {
1172 goto out_free;
1173 }
1174
1175 }
1176
1177 /* Prime the peer's transport structures. */
1178 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u))
,
1179 SCTP_UNKNOWN);
1180 if (!transport) {
1181 err = -ENOMEM12;
1182 goto out_free;
1183 }
1184
1185 addrcnt++;
1186 addr_buf += af->sockaddr_len;
1187 walk_size += af->sockaddr_len;
1188 }
1189
1190 /* In case the user of sctp_connectx() wants an association
1191 * id back, assign one now.
1192 */
1193 if (assoc_id) {
1194 err = sctp_assoc_set_id(asoc, GFP_KERNEL((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u))
);
1195 if (err < 0)
1196 goto out_free;
1197 }
1198
1199 err = sctp_primitive_ASSOCIATE(net, asoc, NULL((void *)0));
1200 if (err < 0) {
1201 goto out_free;
1202 }
1203
1204 /* Initialize sk's dport and daddr for getpeername() */
1205 inet_sk(sk)->inet_dportsk.__sk_common.skc_dport = htons(asoc->peer.port)(( __be16)(__builtin_constant_p((__u16)((asoc->peer.port))
) ? ((__u16)( (((__u16)((asoc->peer.port)) & (__u16)0x00ffU
) << 8) | (((__u16)((asoc->peer.port)) & (__u16)
0xff00U) >> 8))) : __fswab16((asoc->peer.port))))
;
1206 sp->pf->to_sk_daddr(sa_addr, sk);
1207 sk->sk_err = 0;
1208
1209 /* in-kernel sockets don't generally have a file allocated to them
1210 * if all they do is call sock_create_kern().
1211 */
1212 if (sk->sk_socket->file)
1213 f_flags = sk->sk_socket->file->f_flags;
1214
1215 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK00004000);
1216
1217 if (assoc_id)
1218 *assoc_id = asoc->assoc_id;
1219 err = sctp_wait_for_connect(asoc, &timeo);
1220 /* Note: the asoc may be freed after the return of
1221 * sctp_wait_for_connect.
1222 */
1223
1224 /* Don't free association on exit. */
1225 asoc = NULL((void *)0);
1226
1227out_free:
1228 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n"
), .lineno = 1229, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", __func__
, asoc, kaddrs, err); } while (0)
1229 __func__, asoc, kaddrs, err)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n"
), .lineno = 1229, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: took out_free path with asoc:%p kaddrs:%p err:%d\n", __func__
, asoc, kaddrs, err); } while (0)
;
1230
1231 if (asoc) {
1232 /* sctp_primitive_ASSOCIATE may have added this association
1233 * To the hash table, try to unhash it, just in case, its a noop
1234 * if it wasn't hashed so we're safe
1235 */
1236 sctp_association_free(asoc);
1237 }
1238 return err;
1239}
1240
1241/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1242 *
1243 * API 8.9
1244 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1245 * sctp_assoc_t *asoc);
1246 *
1247 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1248 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1249 * or IPv6 addresses.
1250 *
1251 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1252 * Section 3.1.2 for this usage.
1253 *
1254 * addrs is a pointer to an array of one or more socket addresses. Each
1255 * address is contained in its appropriate structure (i.e. struct
1256 * sockaddr_in or struct sockaddr_in6) the family of the address type
1257 * must be used to distengish the address length (note that this
1258 * representation is termed a "packed array" of addresses). The caller
1259 * specifies the number of addresses in the array with addrcnt.
1260 *
1261 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1262 * the association id of the new association. On failure, sctp_connectx()
1263 * returns -1, and sets errno to the appropriate error code. The assoc_id
1264 * is not touched by the kernel.
1265 *
1266 * For SCTP, the port given in each socket address must be the same, or
1267 * sctp_connectx() will fail, setting errno to EINVAL.
1268 *
1269 * An application can use sctp_connectx to initiate an association with
1270 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1271 * allows a caller to specify multiple addresses at which a peer can be
1272 * reached. The way the SCTP stack uses the list of addresses to set up
1273 * the association is implementation dependent. This function only
1274 * specifies that the stack will try to make use of all the addresses in
1275 * the list when needed.
1276 *
1277 * Note that the list of addresses passed in is only used for setting up
1278 * the association. It does not necessarily equal the set of addresses
1279 * the peer uses for the resulting association. If the caller wants to
1280 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1281 * retrieve them after the association has been set up.
1282 *
1283 * Basically do nothing but copying the addresses from user to kernel
1284 * land and invoking either sctp_connectx(). This is used for tunneling
1285 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1286 *
1287 * We don't use copy_from_user() for optimization: we first do the
1288 * sanity checks (buffer size -fast- and access check-healthy
1289 * pointer); if all of those succeed, then we can alloc the memory
1290 * (expensive operation) needed to copy the data to kernel. Then we do
1291 * the copying without checking the user space area
1292 * (__copy_from_user()).
1293 *
1294 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1295 * it.
1296 *
1297 * sk The sk of the socket
1298 * addrs The pointer to the addresses in user land
1299 * addrssize Size of the addrs buffer
1300 *
1301 * Returns >=0 if ok, <0 errno code on error.
1302 */
1303static int __sctp_setsockopt_connectx(struct sock *sk,
1304 struct sockaddr __user *addrs,
1305 int addrs_size,
1306 sctp_assoc_t *assoc_id)
1307{
1308 struct sockaddr *kaddrs;
1309 gfp_t gfp = GFP_KERNEL((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u))
;
1310 int err = 0;
1311
1312 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p addrs:%p addrs_size:%d\n"
), .lineno = 1313, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p addrs:%p addrs_size:%d\n", __func__, sk, addrs, addrs_size
); } while (0)
1313 __func__, sk, addrs, addrs_size)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p addrs:%p addrs_size:%d\n"
), .lineno = 1313, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p addrs:%p addrs_size:%d\n", __func__, sk, addrs, addrs_size
); } while (0)
;
1314
1315 if (unlikely(addrs_size <= 0)(addrs_size <= 0))
1316 return -EINVAL22;
1317
1318 /* Check the user passed a healthy pointer. */
1319 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))(!(!({ (void)0; __chk_range_not_ok((unsigned long )(addrs), addrs_size
, (get_current()->thread.addr_limit.seg)); })))
)
1320 return -EFAULT14;
1321
1322 /* Alloc space for the address array in kernel memory. */
1323 if (sk->sk_socket->file)
1324 gfp = GFP_USER((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u) | (( gfp_t)0x20000u))
| __GFP_NOWARN(( gfp_t)0x200u);
1325 kaddrs = kmalloc(addrs_size, gfp);
1326 if (unlikely(!kaddrs)(!kaddrs))
1327 return -ENOMEM12;
1328
1329 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1330 err = -EFAULT14;
1331 } else {
1332 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1333 }
1334
1335 kfree(kaddrs);
1336
1337 return err;
1338}
1339
1340/*
1341 * This is an older interface. It's kept for backward compatibility
1342 * to the option that doesn't provide association id.
1343 */
1344static int sctp_setsockopt_connectx_old(struct sock *sk,
1345 struct sockaddr __user *addrs,
1346 int addrs_size)
1347{
1348 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL((void *)0));
1349}
1350
1351/*
1352 * New interface for the API. The since the API is done with a socket
1353 * option, to make it simple we feed back the association id is as a return
1354 * indication to the call. Error is always negative and association id is
1355 * always positive.
1356 */
1357static int sctp_setsockopt_connectx(struct sock *sk,
1358 struct sockaddr __user *addrs,
1359 int addrs_size)
1360{
1361 sctp_assoc_t assoc_id = 0;
1362 int err = 0;
1363
1364 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1365
1366 if (err)
1367 return err;
1368 else
1369 return assoc_id;
1370}
1371
1372/*
1373 * New (hopefully final) interface for the API.
1374 * We use the sctp_getaddrs_old structure so that use-space library
1375 * can avoid any unnecessary allocations. The only different part
1376 * is that we store the actual length of the address buffer into the
1377 * addrs_num structure member. That way we can re-use the existing
1378 * code.
1379 */
1380#ifdef CONFIG_COMPAT1
1381struct compat_sctp_getaddrs_old {
1382 sctp_assoc_t assoc_id;
1383 s32 addr_num;
1384 compat_uptr_t addrs; /* struct sockaddr * */
1385};
1386#endif
1387
1388static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1389 char __user *optval,
1390 int __user *optlen)
1391{
1392 struct sctp_getaddrs_old param;
1393 sctp_assoc_t assoc_id = 0;
1394 int err = 0;
1395
1396#ifdef CONFIG_COMPAT1
1397 if (in_compat_syscallin_compat_syscall()) {
1398 struct compat_sctp_getaddrs_old param32;
1399
1400 if (len < sizeof(param32))
1401 return -EINVAL22;
1402 if (copy_from_user(&param32, optval, sizeof(param32)))
1403 return -EFAULT14;
1404
1405 param.assoc_id = param32.assoc_id;
1406 param.addr_num = param32.addr_num;
1407 param.addrs = compat_ptr(param32.addrs);
1408 } else
1409#endif
1410 {
1411 if (len < sizeof(param))
1412 return -EINVAL22;
1413 if (copy_from_user(&param, optval, sizeof(param)))
1414 return -EFAULT14;
1415 }
1416
1417 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1418 param.addrs, param.addr_num,
1419 &assoc_id);
1420 if (err == 0 || err == -EINPROGRESS115) {
1421 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1422 return -EFAULT14;
1423 if (put_user(sizeof(assoc_id), optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 1423); __pu_val = sizeof(assoc_id); switch
(sizeof(*(optlen))) { case 1: asm volatile("call __put_user_"
"1" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 2: asm volatile("call __put_user_"
"2" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
1424 return -EFAULT14;
1425 }
1426
1427 return err;
1428}
1429
1430/* API 3.1.4 close() - UDP Style Syntax
1431 * Applications use close() to perform graceful shutdown (as described in
1432 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1433 * by a UDP-style socket.
1434 *
1435 * The syntax is
1436 *
1437 * ret = close(int sd);
1438 *
1439 * sd - the socket descriptor of the associations to be closed.
1440 *
1441 * To gracefully shutdown a specific association represented by the
1442 * UDP-style socket, an application should use the sendmsg() call,
1443 * passing no user data, but including the appropriate flag in the
1444 * ancillary data (see Section xxxx).
1445 *
1446 * If sd in the close() call is a branched-off socket representing only
1447 * one association, the shutdown is performed on that association only.
1448 *
1449 * 4.1.6 close() - TCP Style Syntax
1450 *
1451 * Applications use close() to gracefully close down an association.
1452 *
1453 * The syntax is:
1454 *
1455 * int close(int sd);
1456 *
1457 * sd - the socket descriptor of the association to be closed.
1458 *
1459 * After an application calls close() on a socket descriptor, no further
1460 * socket operations will succeed on that descriptor.
1461 *
1462 * API 7.1.4 SO_LINGER
1463 *
1464 * An application using the TCP-style socket can use this option to
1465 * perform the SCTP ABORT primitive. The linger option structure is:
1466 *
1467 * struct linger {
1468 * int l_onoff; // option on/off
1469 * int l_linger; // linger time
1470 * };
1471 *
1472 * To enable the option, set l_onoff to 1. If the l_linger value is set
1473 * to 0, calling close() is the same as the ABORT primitive. If the
1474 * value is set to a negative value, the setsockopt() call will return
1475 * an error. If the value is set to a positive value linger_time, the
1476 * close() can be blocked for at most linger_time ms. If the graceful
1477 * shutdown phase does not finish during this period, close() will
1478 * return but the graceful shutdown phase continues in the system.
1479 */
1480static void sctp_close(struct sock *sk, long timeout)
1481{
1482 struct net *net = sock_net(sk);
1483 struct sctp_endpoint *ep;
1484 struct sctp_association *asoc;
1485 struct list_head *pos, *temp;
1486 unsigned int data_was_unread;
1487
1488 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, timeout:%ld\n"
), .lineno = 1488, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, timeout:%ld\n", __func__, sk, timeout); } while (
0)
;
1489
1490 lock_sock(sk);
1491 sk->sk_shutdown = SHUTDOWN_MASK3;
1492 sk->sk_state__sk_common.skc_state = SCTP_SS_CLOSING;
1493
1494 ep = sctp_sk(sk)->ep;
1495
1496 /* Clean up any skbs sitting on the receive queue. */
1497 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1498 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1499
1500 /* Walk all associations on an endpoint. */
1501 list_for_each_safe(pos, temp, &ep->asocs)for (pos = (&ep->asocs)->next, temp = pos->next;
pos != (&ep->asocs); pos = temp, temp = pos->next)
{
1502 asoc = list_entry(pos, struct sctp_association, asocs)({ const typeof( ((struct sctp_association *)0)->asocs ) *
__mptr = (pos); (struct sctp_association *)( (char *)__mptr -
__builtin_offsetof(struct sctp_association, asocs) );})
;
1503
1504 if (sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP))) {
1505 /* A closed association can still be in the list if
1506 * it belongs to a TCP-style listening socket that is
1507 * not yet accepted. If so, free it. If not, send an
1508 * ABORT or SHUTDOWN based on the linger options.
1509 */
1510 if (sctp_state(asoc, CLOSED)__sctp_state((asoc), (SCTP_STATE_CLOSED))) {
1511 sctp_association_free(asoc);
1512 continue;
1513 }
1514 }
1515
1516 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1517 !skb_queue_empty(&asoc->ulpq.reasm) ||
1518 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1519 struct sctp_chunk *chunk;
1520
1521 chunk = sctp_make_abort_user(asoc, NULL((void *)0), 0);
1522 sctp_primitive_ABORT(net, asoc, chunk);
1523 } else
1524 sctp_primitive_SHUTDOWN(net, asoc, NULL((void *)0));
1525 }
1526
1527 /* On a TCP-style socket, block for at most linger_time if set. */
1528 if (sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)) && timeout)
1529 sctp_wait_for_close(sk, timeout);
1530
1531 /* This will run the backlog queue. */
1532 release_sock(sk);
1533
1534 /* Supposedly, no process has access to the socket, but
1535 * the net layers still may.
1536 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1537 * held and that should be grabbed before socket lock.
1538 */
1539 spin_lock_bh(&net->sctp.addr_wq_lock);
1540 bh_lock_sock(sk)spin_lock(&((sk)->sk_lock.slock));
1541
1542 /* Hold the sock, since sk_common_release() will put sock_put()
1543 * and we have just a little more cleanup.
1544 */
1545 sock_hold(sk);
1546 sk_common_release(sk);
1547
1548 bh_unlock_sock(sk)spin_unlock(&((sk)->sk_lock.slock));
1549 spin_unlock_bh(&net->sctp.addr_wq_lock);
1550
1551 sock_put(sk);
1552
1553 SCTP_DBG_OBJCNT_DEC(sock)atomic_dec(&sctp_dbg_objcnt_sock);
1554}
1555
1556/* Handle EPIPE error. */
1557static int sctp_error(struct sock *sk, int flags, int err)
1558{
1559 if (err == -EPIPE32)
1560 err = sock_error(sk) ? : -EPIPE32;
1561 if (err == -EPIPE32 && !(flags & MSG_NOSIGNAL0x4000))
1562 send_sig(SIGPIPE13, currentget_current(), 0);
1563 return err;
1564}
1565
1566/* API 3.1.3 sendmsg() - UDP Style Syntax
1567 *
1568 * An application uses sendmsg() and recvmsg() calls to transmit data to
1569 * and receive data from its peer.
1570 *
1571 * ssize_t sendmsg(int socket, const struct msghdr *message,
1572 * int flags);
1573 *
1574 * socket - the socket descriptor of the endpoint.
1575 * message - pointer to the msghdr structure which contains a single
1576 * user message and possibly some ancillary data.
1577 *
1578 * See Section 5 for complete description of the data
1579 * structures.
1580 *
1581 * flags - flags sent or received with the user message, see Section
1582 * 5 for complete description of the flags.
1583 *
1584 * Note: This function could use a rewrite especially when explicit
1585 * connect support comes in.
1586 */
1587/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1588
1589static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1590
1591static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1592{
1593 struct net *net = sock_net(sk);
1594 struct sctp_sock *sp;
1595 struct sctp_endpoint *ep;
1596 struct sctp_association *new_asoc = NULL((void *)0), *asoc = NULL((void *)0);
1597 struct sctp_transport *transport, *chunk_tp;
1598 struct sctp_chunk *chunk;
1599 union sctp_addr to;
1600 struct sockaddr *msg_name = NULL((void *)0);
1601 struct sctp_sndrcvinfo default_sinfo;
1602 struct sctp_sndrcvinfo *sinfo;
1603 struct sctp_initmsg *sinit;
1604 sctp_assoc_t associd = 0;
1605 sctp_cmsgs_t cmsgs = { NULL((void *)0) };
1606 sctp_scope_t scope;
1607 bool fill_sinfo_ttl = false, wait_connect = false;
1608 struct sctp_datamsg *datamsg;
1609 int msg_flags = msg->msg_flags;
1610 __u16 sinfo_flags = 0;
1611 long timeo;
1612 int err;
1613
1614 err = 0;
1615 sp = sctp_sk(sk);
1616 ep = sp->ep;
1617
1618 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n"
), .lineno = 1619, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, msg,
msg_len, ep); } while (0)
1619 msg, msg_len, ep)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n"
), .lineno = 1619, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk, msg,
msg_len, ep); } while (0)
;
1620
1621 /* We cannot send a message over a TCP-style listening socket. */
1622 if (sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)) && sctp_sstate(sk, LISTENING)__sctp_sstate((sk), (SCTP_SS_LISTENING))) {
1623 err = -EPIPE32;
1624 goto out_nounlock;
1625 }
1626
1627 /* Parse out the SCTP CMSGs. */
1628 err = sctp_msghdr_parse(msg, &cmsgs);
1629 if (err) {
1630 pr_debug("%s: msghdr parse err:%x\n", __func__, err)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: msghdr parse err:%x\n"
), .lineno = 1630, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: msghdr parse err:%x\n", __func__, err); } while (0)
;
1631 goto out_nounlock;
1632 }
1633
1634 /* Fetch the destination address for this packet. This
1635 * address only selects the association--it is not necessarily
1636 * the address we will send to.
1637 * For a peeled-off socket, msg_name is ignored.
1638 */
1639 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH)__sctp_style((sk), (SCTP_SOCKET_UDP_HIGH_BANDWIDTH)) && msg->msg_name) {
1640 int msg_namelen = msg->msg_namelen;
1641
1642 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1643 msg_namelen);
1644 if (err)
1645 return err;
1646
1647 if (msg_namelen > sizeof(to))
1648 msg_namelen = sizeof(to);
1649 memcpy(&to, msg->msg_name, msg_namelen)({ size_t __len = (msg_namelen); void *__ret; if (__builtin_constant_p
(msg_namelen) && __len >= 64) __ret = __memcpy((&
to), (msg->msg_name), __len); else __ret = __builtin_memcpy
((&to), (msg->msg_name), __len); __ret; })
;
1650 msg_name = msg->msg_name;
1651 }
1652
1653 sinit = cmsgs.init;
1654 if (cmsgs.sinfo != NULL((void *)0)) {
1655 memset(&default_sinfo, 0, sizeof(default_sinfo));
1656 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1657 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1658 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1659 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1660 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1661
1662 sinfo = &default_sinfo;
1663 fill_sinfo_ttl = true;
1664 } else {
1665 sinfo = cmsgs.srinfo;
1666 }
1667 /* Did the user specify SNDINFO/SNDRCVINFO? */
1668 if (sinfo) {
1669 sinfo_flags = sinfo->sinfo_flags;
1670 associd = sinfo->sinfo_assoc_id;
1671 }
1672
1673 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: msg_len:%zu, sinfo_flags:0x%x\n"
), .lineno = 1674, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, msg_len, sinfo_flags
); } while (0)
1674 msg_len, sinfo_flags)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: msg_len:%zu, sinfo_flags:0x%x\n"
), .lineno = 1674, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__, msg_len, sinfo_flags
); } while (0)
;
1675
1676 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1677 if (sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1678 err = -EINVAL22;
1679 goto out_nounlock;
1680 }
1681
1682 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1683 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1684 * If SCTP_ABORT is set, the message length could be non zero with
1685 * the msg_iov set to the user abort reason.
1686 */
1687 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1688 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1689 err = -EINVAL22;
1690 goto out_nounlock;
1691 }
1692
1693 /* If SCTP_ADDR_OVER is set, there must be an address
1694 * specified in msg_name.
1695 */
1696 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1697 err = -EINVAL22;
1698 goto out_nounlock;
1699 }
1700
1701 transport = NULL((void *)0);
1702
1703 pr_debug("%s: about to look up association\n", __func__)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: about to look up association\n"
), .lineno = 1703, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: about to look up association\n", __func__); } while (0)
;
1704
1705 lock_sock(sk);
1706
1707 /* If a msg_name has been specified, assume this is to be used. */
1708 if (msg_name) {
1709 /* Look for a matching association on the endpoint. */
1710 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1711
1712 /* If we could not find a matching association on the
1713 * endpoint, make sure that it is not a TCP-style
1714 * socket that already has an association or there is
1715 * no peeled-off association on another socket.
1716 */
1717 if (!asoc &&
1718 ((sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)) &&
1719 (sctp_sstate(sk, ESTABLISHED)__sctp_sstate((sk), (SCTP_SS_ESTABLISHED)) ||
1720 sctp_sstate(sk, CLOSING)__sctp_sstate((sk), (SCTP_SS_CLOSING)))) ||
1721 sctp_endpoint_is_peeled_off(ep, &to))) {
1722 err = -EADDRNOTAVAIL99;
1723 goto out_unlock;
1724 }
1725 } else {
1726 asoc = sctp_id2assoc(sk, associd);
1727 if (!asoc) {
1728 err = -EPIPE32;
1729 goto out_unlock;
1730 }
1731 }
1732
1733 if (asoc) {
1734 pr_debug("%s: just looked up association:%p\n", __func__, asoc)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: just looked up association:%p\n"
), .lineno = 1734, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: just looked up association:%p\n", __func__, asoc); } while
(0)
;
1735
1736 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1737 * socket that has an association in CLOSED state. This can
1738 * happen when an accepted socket has an association that is
1739 * already CLOSED.
1740 */
1741 if (sctp_state(asoc, CLOSED)__sctp_state((asoc), (SCTP_STATE_CLOSED)) && sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP))) {
1742 err = -EPIPE32;
1743 goto out_unlock;
1744 }
1745
1746 if (sinfo_flags & SCTP_EOF) {
1747 pr_debug("%s: shutting down association:%p\n",do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: shutting down association:%p\n"
), .lineno = 1748, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: shutting down association:%p\n", __func__, asoc); } while
(0)
1748 __func__, asoc)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: shutting down association:%p\n"
), .lineno = 1748, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: shutting down association:%p\n", __func__, asoc); } while
(0)
;
1749
1750 sctp_primitive_SHUTDOWN(net, asoc, NULL((void *)0));
1751 err = 0;
1752 goto out_unlock;
1753 }
1754 if (sinfo_flags & SCTP_ABORT) {
1755
1756 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1757 if (!chunk) {
1758 err = -ENOMEM12;
1759 goto out_unlock;
1760 }
1761
1762 pr_debug("%s: aborting association:%p\n",do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: aborting association:%p\n"
), .lineno = 1763, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: aborting association:%p\n", __func__, asoc); } while (0
)
1763 __func__, asoc)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: aborting association:%p\n"
), .lineno = 1763, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: aborting association:%p\n", __func__, asoc); } while (0
)
;
1764
1765 sctp_primitive_ABORT(net, asoc, chunk);
1766 err = 0;
1767 goto out_unlock;
1768 }
1769 }
1770
1771 /* Do we need to create the association? */
1772 if (!asoc) {
1773 pr_debug("%s: there is no association yet\n", __func__)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: there is no association yet\n"
), .lineno = 1773, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: there is no association yet\n", __func__); } while (0)
;
1774
1775 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1776 err = -EINVAL22;
1777 goto out_unlock;
1778 }
1779
1780 /* Check for invalid stream against the stream counts,
1781 * either the default or the user specified stream counts.
1782 */
1783 if (sinfo) {
1784 if (!sinit || !sinit->sinit_num_ostreams) {
1785 /* Check against the defaults. */
1786 if (sinfo->sinfo_stream >=
1787 sp->initmsg.sinit_num_ostreams) {
1788 err = -EINVAL22;
1789 goto out_unlock;
1790 }
1791 } else {
1792 /* Check against the requested. */
1793 if (sinfo->sinfo_stream >=
1794 sinit->sinit_num_ostreams) {
1795 err = -EINVAL22;
1796 goto out_unlock;
1797 }
1798 }
1799 }
1800
1801 /*
1802 * API 3.1.2 bind() - UDP Style Syntax
1803 * If a bind() or sctp_bindx() is not called prior to a
1804 * sendmsg() call that initiates a new association, the
1805 * system picks an ephemeral port and will choose an address
1806 * set equivalent to binding with a wildcard address.
1807 */
1808 if (!ep->base.bind_addr.port) {
1809 if (sctp_autobind(sk)) {
1810 err = -EAGAIN11;
1811 goto out_unlock;
1812 }
1813 } else {
1814 /*
1815 * If an unprivileged user inherits a one-to-many
1816 * style socket with open associations on a privileged
1817 * port, it MAY be permitted to accept new associations,
1818 * but it SHOULD NOT be permitted to open new
1819 * associations.
1820 */
1821 if (ep->base.bind_addr.port < PROT_SOCK1024 &&
1822 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE10)) {
1823 err = -EACCES13;
1824 goto out_unlock;
1825 }
1826 }
1827
1828 scope = sctp_scope(&to);
1829 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u))
);
1830 if (!new_asoc) {
1831 err = -ENOMEM12;
1832 goto out_unlock;
1833 }
1834 asoc = new_asoc;
1835 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u))
);
1836 if (err < 0) {
1837 err = -ENOMEM12;
1838 goto out_free;
1839 }
1840
1841 /* If the SCTP_INIT ancillary data is specified, set all
1842 * the association init values accordingly.
1843 */
1844 if (sinit) {
1845 if (sinit->sinit_num_ostreams) {
1846 asoc->c.sinit_num_ostreams =
1847 sinit->sinit_num_ostreams;
1848 }
1849 if (sinit->sinit_max_instreams) {
1850 asoc->c.sinit_max_instreams =
1851 sinit->sinit_max_instreams;
1852 }
1853 if (sinit->sinit_max_attempts) {
1854 asoc->max_init_attempts
1855 = sinit->sinit_max_attempts;
1856 }
1857 if (sinit->sinit_max_init_timeo) {
1858 asoc->max_init_timeo =
1859 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1860 }
1861 }
1862
1863 /* Prime the peer's transport structures. */
1864 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u))
, SCTP_UNKNOWN);
1865 if (!transport) {
1866 err = -ENOMEM12;
1867 goto out_free;
1868 }
1869 }
1870
1871 /* ASSERT: we have a valid association at this point. */
1872 pr_debug("%s: we have a valid association\n", __func__)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: we have a valid association\n"
), .lineno = 1872, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: we have a valid association\n", __func__); } while (0)
;
1873
1874 if (!sinfo) {
1875 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1876 * one with some defaults.
1877 */
1878 memset(&default_sinfo, 0, sizeof(default_sinfo));
1879 default_sinfo.sinfo_stream = asoc->default_stream;
1880 default_sinfo.sinfo_flags = asoc->default_flags;
1881 default_sinfo.sinfo_ppid = asoc->default_ppid;
1882 default_sinfo.sinfo_context = asoc->default_context;
1883 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1884 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1885
1886 sinfo = &default_sinfo;
1887 } else if (fill_sinfo_ttl) {
1888 /* In case SNDINFO was specified, we still need to fill
1889 * it with a default ttl from the assoc here.
1890 */
1891 sinfo->sinfo_timetolive = asoc->default_timetolive;
1892 }
1893
1894 /* API 7.1.7, the sndbuf size per association bounds the
1895 * maximum size of data that can be sent in a single send call.
1896 */
1897 if (msg_len > sk->sk_sndbuf) {
1898 err = -EMSGSIZE90;
1899 goto out_free;
1900 }
1901
1902 if (asoc->pmtu_pending)
1903 sctp_assoc_pending_pmtu(sk, asoc);
1904
1905 /* If fragmentation is disabled and the message length exceeds the
1906 * association fragmentation point, return EMSGSIZE. The I-D
1907 * does not specify what this error is, but this looks like
1908 * a great fit.
1909 */
1910 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1911 err = -EMSGSIZE90;
1912 goto out_free;
1913 }
1914
1915 /* Check for invalid stream. */
1916 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1917 err = -EINVAL22;
1918 goto out_free;
1919 }
1920
1921 if (sctp_wspace(asoc) < msg_len)
1922 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1923
1924 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT0x40);
1925 if (!sctp_wspace(asoc)) {
1926 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1927 if (err)
1928 goto out_free;
1929 }
1930
1931 /* If an address is passed with the sendto/sendmsg call, it is used
1932 * to override the primary destination address in the TCP model, or
1933 * when SCTP_ADDR_OVER flag is set in the UDP model.
1934 */
1935 if ((sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)) && msg_name) ||
1936 (sinfo_flags & SCTP_ADDR_OVER)) {
1937 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1938 if (!chunk_tp) {
1939 err = -EINVAL22;
1940 goto out_free;
1941 }
1942 } else
1943 chunk_tp = NULL((void *)0);
1944
1945 /* Auto-connect, if we aren't connected already. */
1946 if (sctp_state(asoc, CLOSED)__sctp_state((asoc), (SCTP_STATE_CLOSED))) {
1947 err = sctp_primitive_ASSOCIATE(net, asoc, NULL((void *)0));
1948 if (err < 0)
1949 goto out_free;
1950
1951 wait_connect = true;
1952 pr_debug("%s: we associated primitively\n", __func__)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: we associated primitively\n"
), .lineno = 1952, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: we associated primitively\n", __func__); } while (0)
;
1953 }
1954
1955 /* Break the message into multiple chunks of maximum size. */
1956 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1957 if (IS_ERR(datamsg)) {
1958 err = PTR_ERR(datamsg);
1959 goto out_free;
1960 }
1961
1962 /* Now send the (possibly) fragmented message. */
1963 list_for_each_entry(chunk, &datamsg->chunks, frag_list)for (chunk = ({ const typeof( ((typeof(*chunk) *)0)->frag_list
) *__mptr = ((&datamsg->chunks)->next); (typeof(*chunk
) *)( (char *)__mptr - __builtin_offsetof(typeof(*chunk), frag_list
) );}); &chunk->frag_list != (&datamsg->chunks)
; chunk = ({ const typeof( ((typeof(*(chunk)) *)0)->frag_list
) *__mptr = ((chunk)->frag_list.next); (typeof(*(chunk)) *
)( (char *)__mptr - __builtin_offsetof(typeof(*(chunk)), frag_list
) );}))
{
1964 sctp_chunk_hold(chunk);
1965
1966 /* Do accounting for the write space. */
1967 sctp_set_owner_w(chunk);
1968
1969 chunk->transport = chunk_tp;
1970 }
1971
1972 /* Send it to the lower layers. Note: all chunks
1973 * must either fail or succeed. The lower layer
1974 * works that way today. Keep it that way or this
1975 * breaks.
1976 */
1977 err = sctp_primitive_SEND(net, asoc, datamsg);
1978 /* Did the lower layer accept the chunk? */
1979 if (err) {
1980 sctp_datamsg_free(datamsg);
1981 goto out_free;
1982 }
1983
1984 pr_debug("%s: we sent primitively\n", __func__)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: we sent primitively\n"
), .lineno = 1984, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: we sent primitively\n", __func__); } while (0)
;
1985
1986 sctp_datamsg_put(datamsg);
1987 err = msg_len;
1988
1989 if (unlikely(wait_connect)(wait_connect)) {
1990 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT0x40);
1991 sctp_wait_for_connect(asoc, &timeo);
1992 }
1993
1994 /* If we are already past ASSOCIATE, the lower
1995 * layers are responsible for association cleanup.
1996 */
1997 goto out_unlock;
1998
1999out_free:
2000 if (new_asoc)
2001 sctp_association_free(asoc);
2002out_unlock:
2003 release_sock(sk);
2004
2005out_nounlock:
2006 return sctp_error(sk, msg_flags, err);
2007
2008#if 0
2009do_sock_err:
2010 if (msg_len)
2011 err = msg_len;
2012 else
2013 err = sock_error(sk);
2014 goto out;
2015
2016do_interrupted:
2017 if (msg_len)
2018 err = msg_len;
2019 goto out;
2020#endif /* 0 */
2021}
2022
2023/* This is an extended version of skb_pull() that removes the data from the
2024 * start of a skb even when data is spread across the list of skb's in the
2025 * frag_list. len specifies the total amount of data that needs to be removed.
2026 * when 'len' bytes could be removed from the skb, it returns 0.
2027 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2028 * could not be removed.
2029 */
2030static int sctp_skb_pull(struct sk_buff *skb, int len)
2031{
2032 struct sk_buff *list;
2033 int skb_len = skb_headlen(skb);
2034 int rlen;
2035
2036 if (len <= skb_len) {
2037 __skb_pull(skb, len);
2038 return 0;
2039 }
2040 len -= skb_len;
2041 __skb_pull(skb, skb_len);
2042
2043 skb_walk_frags(skb, list)for (list = ((struct skb_shared_info *)(skb_end_pointer(skb))
)->frag_list; list; list = list->next)
{
2044 rlen = sctp_skb_pull(list, len);
2045 skb->len -= (len-rlen);
2046 skb->data_len -= (len-rlen);
2047
2048 if (!rlen)
2049 return 0;
2050
2051 len = rlen;
2052 }
2053
2054 return len;
2055}
2056
2057/* API 3.1.3 recvmsg() - UDP Style Syntax
2058 *
2059 * ssize_t recvmsg(int socket, struct msghdr *message,
2060 * int flags);
2061 *
2062 * socket - the socket descriptor of the endpoint.
2063 * message - pointer to the msghdr structure which contains a single
2064 * user message and possibly some ancillary data.
2065 *
2066 * See Section 5 for complete description of the data
2067 * structures.
2068 *
2069 * flags - flags sent or received with the user message, see Section
2070 * 5 for complete description of the flags.
2071 */
2072static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2073 int noblock, int flags, int *addr_len)
2074{
2075 struct sctp_ulpevent *event = NULL((void *)0);
2076 struct sctp_sock *sp = sctp_sk(sk);
2077 struct sk_buff *skb, *head_skb;
2078 int copied;
2079 int err = 0;
2080 int skb_len;
2081
2082 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
"addr_len:%p)\n"), .lineno = 2084, .flags = 0, }; if ((descriptor
.flags & (1<<0))) __dynamic_pr_debug(&descriptor
, "sctp" ": " "%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
"addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, addr_len
); } while (0)
2083 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
"addr_len:%p)\n"), .lineno = 2084, .flags = 0, }; if ((descriptor
.flags & (1<<0))) __dynamic_pr_debug(&descriptor
, "sctp" ": " "%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
"addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, addr_len
); } while (0)
2084 addr_len)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
"addr_len:%p)\n"), .lineno = 2084, .flags = 0, }; if ((descriptor
.flags & (1<<0))) __dynamic_pr_debug(&descriptor
, "sctp" ": " "%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
"addr_len:%p)\n", __func__, sk, msg, len, noblock, flags, addr_len
); } while (0)
;
2085
2086 lock_sock(sk);
2087
2088 if (sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)) && !sctp_sstate(sk, ESTABLISHED)__sctp_sstate((sk), (SCTP_SS_ESTABLISHED)) &&
2089 !sctp_sstate(sk, CLOSING)__sctp_sstate((sk), (SCTP_SS_CLOSING)) && !sctp_sstate(sk, CLOSED)__sctp_sstate((sk), (SCTP_SS_CLOSED))) {
2090 err = -ENOTCONN107;
2091 goto out;
2092 }
2093
2094 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2095 if (!skb)
2096 goto out;
2097
2098 /* Get the total length of the skb including any skb's in the
2099 * frag_list.
2100 */
2101 skb_len = skb->len;
2102
2103 copied = skb_len;
2104 if (copied > len)
2105 copied = len;
2106
2107 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2108
2109 event = sctp_skb2event(skb);
2110
2111 if (err)
2112 goto out_free;
2113
2114 if (event->chunk && event->chunk->head_skb)
2115 head_skb = event->chunk->head_skb;
2116 else
2117 head_skb = skb;
2118 sock_recv_ts_and_drops(msg, sk, head_skb);
2119 if (sctp_ulpevent_is_notification(event)) {
2120 msg->msg_flags |= MSG_NOTIFICATIONMSG_NOTIFICATION;
2121 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2122 } else {
2123 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2124 }
2125
2126 /* Check if we allow SCTP_NXTINFO. */
2127 if (sp->recvnxtinfo)
2128 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2129 /* Check if we allow SCTP_RCVINFO. */
2130 if (sp->recvrcvinfo)
2131 sctp_ulpevent_read_rcvinfo(event, msg);
2132 /* Check if we allow SCTP_SNDRCVINFO. */
2133 if (sp->subscribe.sctp_data_io_event)
2134 sctp_ulpevent_read_sndrcvinfo(event, msg);
2135
2136 err = copied;
2137
2138 /* If skb's length exceeds the user's buffer, update the skb and
2139 * push it back to the receive_queue so that the next call to
2140 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2141 */
2142 if (skb_len > copied) {
2143 msg->msg_flags &= ~MSG_EOR0x80;
2144 if (flags & MSG_PEEK2)
2145 goto out_free;
2146 sctp_skb_pull(skb, copied);
2147 skb_queue_head(&sk->sk_receive_queue, skb);
2148
2149 /* When only partial message is copied to the user, increase
2150 * rwnd by that amount. If all the data in the skb is read,
2151 * rwnd is updated when the event is freed.
2152 */
2153 if (!sctp_ulpevent_is_notification(event))
2154 sctp_assoc_rwnd_increase(event->asoc, copied);
2155 goto out;
2156 } else if ((event->msg_flags & MSG_NOTIFICATIONMSG_NOTIFICATION) ||
2157 (event->msg_flags & MSG_EOR0x80))
2158 msg->msg_flags |= MSG_EOR0x80;
2159 else
2160 msg->msg_flags &= ~MSG_EOR0x80;
2161
2162out_free:
2163 if (flags & MSG_PEEK2) {
2164 /* Release the skb reference acquired after peeking the skb in
2165 * sctp_skb_recv_datagram().
2166 */
2167 kfree_skb(skb);
2168 } else {
2169 /* Free the event which includes releasing the reference to
2170 * the owner of the skb, freeing the skb and updating the
2171 * rwnd.
2172 */
2173 sctp_ulpevent_free(event);
2174 }
2175out:
2176 release_sock(sk);
2177 return err;
2178}
2179
2180/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2181 *
2182 * This option is a on/off flag. If enabled no SCTP message
2183 * fragmentation will be performed. Instead if a message being sent
2184 * exceeds the current PMTU size, the message will NOT be sent and
2185 * instead a error will be indicated to the user.
2186 */
2187static int sctp_setsockopt_disable_fragments(struct sock *sk,
2188 char __user *optval,
2189 unsigned int optlen)
2190{
2191 int val;
2192
2193 if (optlen < sizeof(int))
2194 return -EINVAL22;
2195
2196 if (get_user(val, (int __user *)optval)({ int __ret_gu; register __typeof__(__builtin_choose_expr(sizeof
(*((int *)optval)) > sizeof(0UL), 0ULL, 0UL)) __val_gu asm
("%""rdx"); register void *__sp asm("rsp"); (void)0; __might_fault
("net/sctp/socket.c", 2196); asm volatile("call __get_user_%P4"
: "=a" (__ret_gu), "=r" (__val_gu), "+r" (__sp) : "0" ((int *
)optval), "i" (sizeof(*((int *)optval)))); (val) = ( __typeof__
(*((int *)optval))) __val_gu; clang_analyzer_taint(&val);
__builtin_expect(__ret_gu, 0); })
)
2197 return -EFAULT14;
2198
2199 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2200
2201 return 0;
2202}
2203
2204static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2205 unsigned int optlen)
2206{
2207 struct sctp_association *asoc;
2208 struct sctp_ulpevent *event;
2209
2210 if (optlen > sizeof(struct sctp_event_subscribe))
2211 return -EINVAL22;
2212 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2213 return -EFAULT14;
2214
2215 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2216 * if there is no data to be sent or retransmit, the stack will
2217 * immediately send up this notification.
2218 */
2219 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENTSCTP_SENDER_DRY_EVENT,
2220 &sctp_sk(sk)->subscribe)) {
2221 asoc = sctp_id2assoc(sk, 0);
2222
2223 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2224 event = sctp_ulpevent_make_sender_dry_event(asoc,
2225 GFP_ATOMIC((( gfp_t)0x20u)|(( gfp_t)0x80000u)|(( gfp_t)0x2000000u)));
2226 if (!event)
2227 return -ENOMEM12;
2228
2229 sctp_ulpq_tail_event(&asoc->ulpq, event);
2230 }
2231 }
2232
2233 return 0;
2234}
2235
2236/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2237 *
2238 * This socket option is applicable to the UDP-style socket only. When
2239 * set it will cause associations that are idle for more than the
2240 * specified number of seconds to automatically close. An association
2241 * being idle is defined an association that has NOT sent or received
2242 * user data. The special value of '0' indicates that no automatic
2243 * close of any associations should be performed. The option expects an
2244 * integer defining the number of seconds of idle time before an
2245 * association is closed.
2246 */
2247static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2248 unsigned int optlen)
2249{
2250 struct sctp_sock *sp = sctp_sk(sk);
2251 struct net *net = sock_net(sk);
2252
2253 /* Applicable to UDP-style socket only */
2254 if (sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)))
2255 return -EOPNOTSUPP95;
2256 if (optlen != sizeof(int))
2257 return -EINVAL22;
2258 if (copy_from_user(&sp->autoclose, optval, optlen))
2259 return -EFAULT14;
2260
2261 if (sp->autoclose > net->sctp.max_autoclose)
2262 sp->autoclose = net->sctp.max_autoclose;
2263
2264 return 0;
2265}
2266
2267/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2268 *
2269 * Applications can enable or disable heartbeats for any peer address of
2270 * an association, modify an address's heartbeat interval, force a
2271 * heartbeat to be sent immediately, and adjust the address's maximum
2272 * number of retransmissions sent before an address is considered
2273 * unreachable. The following structure is used to access and modify an
2274 * address's parameters:
2275 *
2276 * struct sctp_paddrparams {
2277 * sctp_assoc_t spp_assoc_id;
2278 * struct sockaddr_storage spp_address;
2279 * uint32_t spp_hbinterval;
2280 * uint16_t spp_pathmaxrxt;
2281 * uint32_t spp_pathmtu;
2282 * uint32_t spp_sackdelay;
2283 * uint32_t spp_flags;
2284 * };
2285 *
2286 * spp_assoc_id - (one-to-many style socket) This is filled in the
2287 * application, and identifies the association for
2288 * this query.
2289 * spp_address - This specifies which address is of interest.
2290 * spp_hbinterval - This contains the value of the heartbeat interval,
2291 * in milliseconds. If a value of zero
2292 * is present in this field then no changes are to
2293 * be made to this parameter.
2294 * spp_pathmaxrxt - This contains the maximum number of
2295 * retransmissions before this address shall be
2296 * considered unreachable. If a value of zero
2297 * is present in this field then no changes are to
2298 * be made to this parameter.
2299 * spp_pathmtu - When Path MTU discovery is disabled the value
2300 * specified here will be the "fixed" path mtu.
2301 * Note that if the spp_address field is empty
2302 * then all associations on this address will
2303 * have this fixed path mtu set upon them.
2304 *
2305 * spp_sackdelay - When delayed sack is enabled, this value specifies
2306 * the number of milliseconds that sacks will be delayed
2307 * for. This value will apply to all addresses of an
2308 * association if the spp_address field is empty. Note
2309 * also, that if delayed sack is enabled and this
2310 * value is set to 0, no change is made to the last
2311 * recorded delayed sack timer value.
2312 *
2313 * spp_flags - These flags are used to control various features
2314 * on an association. The flag field may contain
2315 * zero or more of the following options.
2316 *
2317 * SPP_HB_ENABLE - Enable heartbeats on the
2318 * specified address. Note that if the address
2319 * field is empty all addresses for the association
2320 * have heartbeats enabled upon them.
2321 *
2322 * SPP_HB_DISABLE - Disable heartbeats on the
2323 * speicifed address. Note that if the address
2324 * field is empty all addresses for the association
2325 * will have their heartbeats disabled. Note also
2326 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2327 * mutually exclusive, only one of these two should
2328 * be specified. Enabling both fields will have
2329 * undetermined results.
2330 *
2331 * SPP_HB_DEMAND - Request a user initiated heartbeat
2332 * to be made immediately.
2333 *
2334 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2335 * heartbeat delayis to be set to the value of 0
2336 * milliseconds.
2337 *
2338 * SPP_PMTUD_ENABLE - This field will enable PMTU
2339 * discovery upon the specified address. Note that
2340 * if the address feild is empty then all addresses
2341 * on the association are effected.
2342 *
2343 * SPP_PMTUD_DISABLE - This field will disable PMTU
2344 * discovery upon the specified address. Note that
2345 * if the address feild is empty then all addresses
2346 * on the association are effected. Not also that
2347 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2348 * exclusive. Enabling both will have undetermined
2349 * results.
2350 *
2351 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2352 * on delayed sack. The time specified in spp_sackdelay
2353 * is used to specify the sack delay for this address. Note
2354 * that if spp_address is empty then all addresses will
2355 * enable delayed sack and take on the sack delay
2356 * value specified in spp_sackdelay.
2357 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2358 * off delayed sack. If the spp_address field is blank then
2359 * delayed sack is disabled for the entire association. Note
2360 * also that this field is mutually exclusive to
2361 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2362 * results.
2363 */
2364static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2365 struct sctp_transport *trans,
2366 struct sctp_association *asoc,
2367 struct sctp_sock *sp,
2368 int hb_change,
2369 int pmtud_change,
2370 int sackdelay_change)
2371{
2372 int error;
2373
2374 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2375 struct net *net = sock_net(trans->asoc->base.sk);
2376
2377 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2378 if (error)
2379 return error;
2380 }
2381
2382 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2383 * this field is ignored. Note also that a value of zero indicates
2384 * the current setting should be left unchanged.
2385 */
2386 if (params->spp_flags & SPP_HB_ENABLE) {
2387
2388 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2389 * set. This lets us use 0 value when this flag
2390 * is set.
2391 */
2392 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2393 params->spp_hbinterval = 0;
2394
2395 if (params->spp_hbinterval ||
2396 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2397 if (trans) {
2398 trans->hbinterval =
2399 msecs_to_jiffies(params->spp_hbinterval);
2400 } else if (asoc) {
2401 asoc->hbinterval =
2402 msecs_to_jiffies(params->spp_hbinterval);
2403 } else {
2404 sp->hbinterval = params->spp_hbinterval;
2405 }
2406 }
2407 }
2408
2409 if (hb_change) {
2410 if (trans) {
2411 trans->param_flags =
2412 (trans->param_flags & ~SPP_HB) | hb_change;
2413 } else if (asoc) {
2414 asoc->param_flags =
2415 (asoc->param_flags & ~SPP_HB) | hb_change;
2416 } else {
2417 sp->param_flags =
2418 (sp->param_flags & ~SPP_HB) | hb_change;
2419 }
2420 }
2421
2422 /* When Path MTU discovery is disabled the value specified here will
2423 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2424 * include the flag SPP_PMTUD_DISABLE for this field to have any
2425 * effect).
2426 */
2427 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2428 if (trans) {
2429 trans->pathmtu = params->spp_pathmtu;
2430 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2431 } else if (asoc) {
2432 asoc->pathmtu = params->spp_pathmtu;
2433 sctp_frag_point(asoc, params->spp_pathmtu);
2434 } else {
2435 sp->pathmtu = params->spp_pathmtu;
2436 }
2437 }
2438
2439 if (pmtud_change) {
2440 if (trans) {
2441 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2442 (params->spp_flags & SPP_PMTUD_ENABLE);
2443 trans->param_flags =
2444 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2445 if (update) {
2446 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2447 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2448 }
2449 } else if (asoc) {
2450 asoc->param_flags =
2451 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2452 } else {
2453 sp->param_flags =
2454 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2455 }
2456 }
2457
2458 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2459 * value of this field is ignored. Note also that a value of zero
2460 * indicates the current setting should be left unchanged.
2461 */
2462 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2463 if (trans) {
2464 trans->sackdelay =
2465 msecs_to_jiffies(params->spp_sackdelay);
2466 } else if (asoc) {
2467 asoc->sackdelay =
2468 msecs_to_jiffies(params->spp_sackdelay);
2469 } else {
2470 sp->sackdelay = params->spp_sackdelay;
2471 }
2472 }
2473
2474 if (sackdelay_change) {
2475 if (trans) {
2476 trans->param_flags =
2477 (trans->param_flags & ~SPP_SACKDELAY) |
2478 sackdelay_change;
2479 } else if (asoc) {
2480 asoc->param_flags =
2481 (asoc->param_flags & ~SPP_SACKDELAY) |
2482 sackdelay_change;
2483 } else {
2484 sp->param_flags =
2485 (sp->param_flags & ~SPP_SACKDELAY) |
2486 sackdelay_change;
2487 }
2488 }
2489
2490 /* Note that a value of zero indicates the current setting should be
2491 left unchanged.
2492 */
2493 if (params->spp_pathmaxrxt) {
2494 if (trans) {
2495 trans->pathmaxrxt = params->spp_pathmaxrxt;
2496 } else if (asoc) {
2497 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2498 } else {
2499 sp->pathmaxrxt = params->spp_pathmaxrxt;
2500 }
2501 }
2502
2503 return 0;
2504}
2505
2506static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2507 char __user *optval,
2508 unsigned int optlen)
2509{
2510 struct sctp_paddrparams params;
2511 struct sctp_transport *trans = NULL((void *)0);
2512 struct sctp_association *asoc = NULL((void *)0);
2513 struct sctp_sock *sp = sctp_sk(sk);
2514 int error;
2515 int hb_change, pmtud_change, sackdelay_change;
2516
2517 if (optlen != sizeof(struct sctp_paddrparams))
2518 return -EINVAL22;
2519
2520 if (copy_from_user(&params, optval, optlen))
2521 return -EFAULT14;
2522
2523 /* Validate flags and value parameters. */
2524 hb_change = params.spp_flags & SPP_HB;
2525 pmtud_change = params.spp_flags & SPP_PMTUD;
2526 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2527
2528 if (hb_change == SPP_HB ||
2529 pmtud_change == SPP_PMTUD ||
2530 sackdelay_change == SPP_SACKDELAY ||
2531 params.spp_sackdelay > 500 ||
2532 (params.spp_pathmtu &&
2533 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT512))
2534 return -EINVAL22;
2535
2536 /* If an address other than INADDR_ANY is specified, and
2537 * no transport is found, then the request is invalid.
2538 */
2539 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2540 trans = sctp_addr_id2transport(sk, &params.spp_address,
2541 params.spp_assoc_id);
2542 if (!trans)
2543 return -EINVAL22;
2544 }
2545
2546 /* Get association, if assoc_id != 0 and the socket is a one
2547 * to many style socket, and an association was not found, then
2548 * the id was invalid.
2549 */
2550 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2551 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
2552 return -EINVAL22;
2553
2554 /* Heartbeat demand can only be sent on a transport or
2555 * association, but not a socket.
2556 */
2557 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2558 return -EINVAL22;
2559
2560 /* Process parameters. */
2561 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2562 hb_change, pmtud_change,
2563 sackdelay_change);
2564
2565 if (error)
2566 return error;
2567
2568 /* If changes are for association, also apply parameters to each
2569 * transport.
2570 */
2571 if (!trans && asoc) {
2572 list_for_each_entry(trans, &asoc->peer.transport_addr_list,for (trans = ({ const typeof( ((typeof(*trans) *)0)->transports
) *__mptr = ((&asoc->peer.transport_addr_list)->next
); (typeof(*trans) *)( (char *)__mptr - __builtin_offsetof(typeof
(*trans), transports) );}); &trans->transports != (&
asoc->peer.transport_addr_list); trans = ({ const typeof( (
(typeof(*(trans)) *)0)->transports ) *__mptr = ((trans)->
transports.next); (typeof(*(trans)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(trans)), transports) );}))
2573 transports)for (trans = ({ const typeof( ((typeof(*trans) *)0)->transports
) *__mptr = ((&asoc->peer.transport_addr_list)->next
); (typeof(*trans) *)( (char *)__mptr - __builtin_offsetof(typeof
(*trans), transports) );}); &trans->transports != (&
asoc->peer.transport_addr_list); trans = ({ const typeof( (
(typeof(*(trans)) *)0)->transports ) *__mptr = ((trans)->
transports.next); (typeof(*(trans)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(trans)), transports) );}))
{
2574 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2575 hb_change, pmtud_change,
2576 sackdelay_change);
2577 }
2578 }
2579
2580 return 0;
2581}
2582
2583static inlineinline __attribute__((no_instrument_function)) __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2584{
2585 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2586}
2587
2588static inlineinline __attribute__((no_instrument_function)) __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2589{
2590 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2591}
2592
2593/*
2594 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2595 *
2596 * This option will effect the way delayed acks are performed. This
2597 * option allows you to get or set the delayed ack time, in
2598 * milliseconds. It also allows changing the delayed ack frequency.
2599 * Changing the frequency to 1 disables the delayed sack algorithm. If
2600 * the assoc_id is 0, then this sets or gets the endpoints default
2601 * values. If the assoc_id field is non-zero, then the set or get
2602 * effects the specified association for the one to many model (the
2603 * assoc_id field is ignored by the one to one model). Note that if
2604 * sack_delay or sack_freq are 0 when setting this option, then the
2605 * current values will remain unchanged.
2606 *
2607 * struct sctp_sack_info {
2608 * sctp_assoc_t sack_assoc_id;
2609 * uint32_t sack_delay;
2610 * uint32_t sack_freq;
2611 * };
2612 *
2613 * sack_assoc_id - This parameter, indicates which association the user
2614 * is performing an action upon. Note that if this field's value is
2615 * zero then the endpoints default value is changed (effecting future
2616 * associations only).
2617 *
2618 * sack_delay - This parameter contains the number of milliseconds that
2619 * the user is requesting the delayed ACK timer be set to. Note that
2620 * this value is defined in the standard to be between 200 and 500
2621 * milliseconds.
2622 *
2623 * sack_freq - This parameter contains the number of packets that must
2624 * be received before a sack is sent without waiting for the delay
2625 * timer to expire. The default value for this is 2, setting this
2626 * value to 1 will disable the delayed sack algorithm.
2627 */
2628
2629static int sctp_setsockopt_delayed_ack(struct sock *sk,
2630 char __user *optval, unsigned int optlen)
2631{
2632 struct sctp_sack_info params;
2633 struct sctp_transport *trans = NULL((void *)0);
2634 struct sctp_association *asoc = NULL((void *)0);
2635 struct sctp_sock *sp = sctp_sk(sk);
2636
2637 if (optlen == sizeof(struct sctp_sack_info)) {
2638 if (copy_from_user(&params, optval, optlen))
2639 return -EFAULT14;
2640
2641 if (params.sack_delay == 0 && params.sack_freq == 0)
2642 return 0;
2643 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2644 pr_warn_ratelimited(DEPRECATED({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n", get_current()->comm
, task_pid_nr(get_current())); })
2645 "%s (pid %d) "({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n", get_current()->comm
, task_pid_nr(get_current())); })
2646 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n", get_current()->comm
, task_pid_nr(get_current())); })
2647 "Use struct sctp_sack_info instead\n",({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n", get_current()->comm
, task_pid_nr(get_current())); })
2648 current->comm, task_pid_nr(current))({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n", get_current()->comm
, task_pid_nr(get_current())); })
;
2649 if (copy_from_user(&params, optval, optlen))
2650 return -EFAULT14;
2651
2652 if (params.sack_delay == 0)
2653 params.sack_freq = 1;
2654 else
2655 params.sack_freq = 0;
2656 } else
2657 return -EINVAL22;
2658
2659 /* Validate value parameter. */
2660 if (params.sack_delay > 500)
2661 return -EINVAL22;
2662
2663 /* Get association, if sack_assoc_id != 0 and the socket is a one
2664 * to many style socket, and an association was not found, then
2665 * the id was invalid.
2666 */
2667 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2668 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
2669 return -EINVAL22;
2670
2671 if (params.sack_delay) {
2672 if (asoc) {
2673 asoc->sackdelay =
2674 msecs_to_jiffies(params.sack_delay);
2675 asoc->param_flags =
2676 sctp_spp_sackdelay_enable(asoc->param_flags);
2677 } else {
2678 sp->sackdelay = params.sack_delay;
2679 sp->param_flags =
2680 sctp_spp_sackdelay_enable(sp->param_flags);
2681 }
2682 }
2683
2684 if (params.sack_freq == 1) {
2685 if (asoc) {
2686 asoc->param_flags =
2687 sctp_spp_sackdelay_disable(asoc->param_flags);
2688 } else {
2689 sp->param_flags =
2690 sctp_spp_sackdelay_disable(sp->param_flags);
2691 }
2692 } else if (params.sack_freq > 1) {
2693 if (asoc) {
2694 asoc->sackfreq = params.sack_freq;
2695 asoc->param_flags =
2696 sctp_spp_sackdelay_enable(asoc->param_flags);
2697 } else {
2698 sp->sackfreq = params.sack_freq;
2699 sp->param_flags =
2700 sctp_spp_sackdelay_enable(sp->param_flags);
2701 }
2702 }
2703
2704 /* If change is for association, also apply to each transport. */
2705 if (asoc) {
2706 list_for_each_entry(trans, &asoc->peer.transport_addr_list,for (trans = ({ const typeof( ((typeof(*trans) *)0)->transports
) *__mptr = ((&asoc->peer.transport_addr_list)->next
); (typeof(*trans) *)( (char *)__mptr - __builtin_offsetof(typeof
(*trans), transports) );}); &trans->transports != (&
asoc->peer.transport_addr_list); trans = ({ const typeof( (
(typeof(*(trans)) *)0)->transports ) *__mptr = ((trans)->
transports.next); (typeof(*(trans)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(trans)), transports) );}))
2707 transports)for (trans = ({ const typeof( ((typeof(*trans) *)0)->transports
) *__mptr = ((&asoc->peer.transport_addr_list)->next
); (typeof(*trans) *)( (char *)__mptr - __builtin_offsetof(typeof
(*trans), transports) );}); &trans->transports != (&
asoc->peer.transport_addr_list); trans = ({ const typeof( (
(typeof(*(trans)) *)0)->transports ) *__mptr = ((trans)->
transports.next); (typeof(*(trans)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(trans)), transports) );}))
{
2708 if (params.sack_delay) {
2709 trans->sackdelay =
2710 msecs_to_jiffies(params.sack_delay);
2711 trans->param_flags =
2712 sctp_spp_sackdelay_enable(trans->param_flags);
2713 }
2714 if (params.sack_freq == 1) {
2715 trans->param_flags =
2716 sctp_spp_sackdelay_disable(trans->param_flags);
2717 } else if (params.sack_freq > 1) {
2718 trans->sackfreq = params.sack_freq;
2719 trans->param_flags =
2720 sctp_spp_sackdelay_enable(trans->param_flags);
2721 }
2722 }
2723 }
2724
2725 return 0;
2726}
2727
2728/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2729 *
2730 * Applications can specify protocol parameters for the default association
2731 * initialization. The option name argument to setsockopt() and getsockopt()
2732 * is SCTP_INITMSG.
2733 *
2734 * Setting initialization parameters is effective only on an unconnected
2735 * socket (for UDP-style sockets only future associations are effected
2736 * by the change). With TCP-style sockets, this option is inherited by
2737 * sockets derived from a listener socket.
2738 */
2739static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2740{
2741 struct sctp_initmsg sinit;
2742 struct sctp_sock *sp = sctp_sk(sk);
2743
2744 if (optlen != sizeof(struct sctp_initmsg))
2745 return -EINVAL22;
2746 if (copy_from_user(&sinit, optval, optlen))
2747 return -EFAULT14;
2748
2749 if (sinit.sinit_num_ostreams)
2750 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2751 if (sinit.sinit_max_instreams)
2752 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2753 if (sinit.sinit_max_attempts)
2754 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2755 if (sinit.sinit_max_init_timeo)
2756 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2757
2758 return 0;
2759}
2760
2761/*
2762 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2763 *
2764 * Applications that wish to use the sendto() system call may wish to
2765 * specify a default set of parameters that would normally be supplied
2766 * through the inclusion of ancillary data. This socket option allows
2767 * such an application to set the default sctp_sndrcvinfo structure.
2768 * The application that wishes to use this socket option simply passes
2769 * in to this call the sctp_sndrcvinfo structure defined in Section
2770 * 5.2.2) The input parameters accepted by this call include
2771 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2772 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2773 * to this call if the caller is using the UDP model.
2774 */
2775static int sctp_setsockopt_default_send_param(struct sock *sk,
2776 char __user *optval,
2777 unsigned int optlen)
2778{
2779 struct sctp_sock *sp = sctp_sk(sk);
2780 struct sctp_association *asoc;
2781 struct sctp_sndrcvinfo info;
2782
2783 if (optlen != sizeof(info))
2784 return -EINVAL22;
2785 if (copy_from_user(&info, optval, optlen))
2786 return -EFAULT14;
2787 if (info.sinfo_flags &
2788 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2789 SCTP_ABORT | SCTP_EOF))
2790 return -EINVAL22;
2791
2792 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2793 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
2794 return -EINVAL22;
2795 if (asoc) {
2796 asoc->default_stream = info.sinfo_stream;
2797 asoc->default_flags = info.sinfo_flags;
2798 asoc->default_ppid = info.sinfo_ppid;
2799 asoc->default_context = info.sinfo_context;
2800 asoc->default_timetolive = info.sinfo_timetolive;
2801 } else {
2802 sp->default_stream = info.sinfo_stream;
2803 sp->default_flags = info.sinfo_flags;
2804 sp->default_ppid = info.sinfo_ppid;
2805 sp->default_context = info.sinfo_context;
2806 sp->default_timetolive = info.sinfo_timetolive;
2807 }
2808
2809 return 0;
2810}
2811
2812/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2813 * (SCTP_DEFAULT_SNDINFO)
2814 */
2815static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2816 char __user *optval,
2817 unsigned int optlen)
2818{
2819 struct sctp_sock *sp = sctp_sk(sk);
2820 struct sctp_association *asoc;
2821 struct sctp_sndinfo info;
2822
2823 if (optlen != sizeof(info))
2824 return -EINVAL22;
2825 if (copy_from_user(&info, optval, optlen))
2826 return -EFAULT14;
2827 if (info.snd_flags &
2828 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2829 SCTP_ABORT | SCTP_EOF))
2830 return -EINVAL22;
2831
2832 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2833 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
2834 return -EINVAL22;
2835 if (asoc) {
2836 asoc->default_stream = info.snd_sid;
2837 asoc->default_flags = info.snd_flags;
2838 asoc->default_ppid = info.snd_ppid;
2839 asoc->default_context = info.snd_context;
2840 } else {
2841 sp->default_stream = info.snd_sid;
2842 sp->default_flags = info.snd_flags;
2843 sp->default_ppid = info.snd_ppid;
2844 sp->default_context = info.snd_context;
2845 }
2846
2847 return 0;
2848}
2849
2850/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2851 *
2852 * Requests that the local SCTP stack use the enclosed peer address as
2853 * the association primary. The enclosed address must be one of the
2854 * association peer's addresses.
2855 */
2856static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2857 unsigned int optlen)
2858{
2859 struct sctp_prim prim;
2860 struct sctp_transport *trans;
2861
2862 if (optlen != sizeof(struct sctp_prim))
2863 return -EINVAL22;
2864
2865 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2866 return -EFAULT14;
2867
2868 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2869 if (!trans)
2870 return -EINVAL22;
2871
2872 sctp_assoc_set_primary(trans->asoc, trans);
2873
2874 return 0;
2875}
2876
2877/*
2878 * 7.1.5 SCTP_NODELAY
2879 *
2880 * Turn on/off any Nagle-like algorithm. This means that packets are
2881 * generally sent as soon as possible and no unnecessary delays are
2882 * introduced, at the cost of more packets in the network. Expects an
2883 * integer boolean flag.
2884 */
2885static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2886 unsigned int optlen)
2887{
2888 int val;
2889
2890 if (optlen < sizeof(int))
2891 return -EINVAL22;
2892 if (get_user(val, (int __user *)optval)({ int __ret_gu; register __typeof__(__builtin_choose_expr(sizeof
(*((int *)optval)) > sizeof(0UL), 0ULL, 0UL)) __val_gu asm
("%""rdx"); register void *__sp asm("rsp"); (void)0; __might_fault
("net/sctp/socket.c", 2892); asm volatile("call __get_user_%P4"
: "=a" (__ret_gu), "=r" (__val_gu), "+r" (__sp) : "0" ((int *
)optval), "i" (sizeof(*((int *)optval)))); (val) = ( __typeof__
(*((int *)optval))) __val_gu; clang_analyzer_taint(&val);
__builtin_expect(__ret_gu, 0); })
)
2893 return -EFAULT14;
2894
2895 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2896 return 0;
2897}
2898
2899/*
2900 *
2901 * 7.1.1 SCTP_RTOINFO
2902 *
2903 * The protocol parameters used to initialize and bound retransmission
2904 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2905 * and modify these parameters.
2906 * All parameters are time values, in milliseconds. A value of 0, when
2907 * modifying the parameters, indicates that the current value should not
2908 * be changed.
2909 *
2910 */
2911static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2912{
2913 struct sctp_rtoinfo rtoinfo;
2914 struct sctp_association *asoc;
2915 unsigned long rto_min, rto_max;
2916 struct sctp_sock *sp = sctp_sk(sk);
2917
2918 if (optlen != sizeof (struct sctp_rtoinfo))
2919 return -EINVAL22;
2920
2921 if (copy_from_user(&rtoinfo, optval, optlen))
2922 return -EFAULT14;
2923
2924 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2925
2926 /* Set the values to the specific association */
2927 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
2928 return -EINVAL22;
2929
2930 rto_max = rtoinfo.srto_max;
2931 rto_min = rtoinfo.srto_min;
2932
2933 if (rto_max)
2934 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2935 else
2936 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2937
2938 if (rto_min)
2939 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2940 else
2941 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2942
2943 if (rto_min > rto_max)
2944 return -EINVAL22;
2945
2946 if (asoc) {
2947 if (rtoinfo.srto_initial != 0)
2948 asoc->rto_initial =
2949 msecs_to_jiffies(rtoinfo.srto_initial);
2950 asoc->rto_max = rto_max;
2951 asoc->rto_min = rto_min;
2952 } else {
2953 /* If there is no association or the association-id = 0
2954 * set the values to the endpoint.
2955 */
2956 if (rtoinfo.srto_initial != 0)
2957 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2958 sp->rtoinfo.srto_max = rto_max;
2959 sp->rtoinfo.srto_min = rto_min;
2960 }
2961
2962 return 0;
2963}
2964
2965/*
2966 *
2967 * 7.1.2 SCTP_ASSOCINFO
2968 *
2969 * This option is used to tune the maximum retransmission attempts
2970 * of the association.
2971 * Returns an error if the new association retransmission value is
2972 * greater than the sum of the retransmission value of the peer.
2973 * See [SCTP] for more information.
2974 *
2975 */
2976static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2977{
2978
2979 struct sctp_assocparams assocparams;
2980 struct sctp_association *asoc;
2981
2982 if (optlen != sizeof(struct sctp_assocparams))
2983 return -EINVAL22;
2984 if (copy_from_user(&assocparams, optval, optlen))
2985 return -EFAULT14;
2986
2987 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2988
2989 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
2990 return -EINVAL22;
2991
2992 /* Set the values to the specific association */
2993 if (asoc) {
2994 if (assocparams.sasoc_asocmaxrxt != 0) {
2995 __u32 path_sum = 0;
2996 int paths = 0;
2997 struct sctp_transport *peer_addr;
2998
2999 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,for (peer_addr = ({ const typeof( ((typeof(*peer_addr) *)0)->
transports ) *__mptr = ((&asoc->peer.transport_addr_list
)->next); (typeof(*peer_addr) *)( (char *)__mptr - __builtin_offsetof
(typeof(*peer_addr), transports) );}); &peer_addr->transports
!= (&asoc->peer.transport_addr_list); peer_addr = ({ const
typeof( ((typeof(*(peer_addr)) *)0)->transports ) *__mptr
= ((peer_addr)->transports.next); (typeof(*(peer_addr)) *
)( (char *)__mptr - __builtin_offsetof(typeof(*(peer_addr)), transports
) );}))
3000 transports)for (peer_addr = ({ const typeof( ((typeof(*peer_addr) *)0)->
transports ) *__mptr = ((&asoc->peer.transport_addr_list
)->next); (typeof(*peer_addr) *)( (char *)__mptr - __builtin_offsetof
(typeof(*peer_addr), transports) );}); &peer_addr->transports
!= (&asoc->peer.transport_addr_list); peer_addr = ({ const
typeof( ((typeof(*(peer_addr)) *)0)->transports ) *__mptr
= ((peer_addr)->transports.next); (typeof(*(peer_addr)) *
)( (char *)__mptr - __builtin_offsetof(typeof(*(peer_addr)), transports
) );}))
{
3001 path_sum += peer_addr->pathmaxrxt;
3002 paths++;
3003 }
3004
3005 /* Only validate asocmaxrxt if we have more than
3006 * one path/transport. We do this because path
3007 * retransmissions are only counted when we have more
3008 * then one path.
3009 */
3010 if (paths > 1 &&
3011 assocparams.sasoc_asocmaxrxt > path_sum)
3012 return -EINVAL22;
3013
3014 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3015 }
3016
3017 if (assocparams.sasoc_cookie_life != 0)
3018 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3019 } else {
3020 /* Set the values to the endpoint */
3021 struct sctp_sock *sp = sctp_sk(sk);
3022
3023 if (assocparams.sasoc_asocmaxrxt != 0)
3024 sp->assocparams.sasoc_asocmaxrxt =
3025 assocparams.sasoc_asocmaxrxt;
3026 if (assocparams.sasoc_cookie_life != 0)
3027 sp->assocparams.sasoc_cookie_life =
3028 assocparams.sasoc_cookie_life;
3029 }
3030 return 0;
3031}
3032
3033/*
3034 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3035 *
3036 * This socket option is a boolean flag which turns on or off mapped V4
3037 * addresses. If this option is turned on and the socket is type
3038 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3039 * If this option is turned off, then no mapping will be done of V4
3040 * addresses and a user will receive both PF_INET6 and PF_INET type
3041 * addresses on the socket.
3042 */
3043static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3044{
3045 int val;
3046 struct sctp_sock *sp = sctp_sk(sk);
3047
3048 if (optlen < sizeof(int))
3049 return -EINVAL22;
3050 if (get_user(val, (int __user *)optval)({ int __ret_gu; register __typeof__(__builtin_choose_expr(sizeof
(*((int *)optval)) > sizeof(0UL), 0ULL, 0UL)) __val_gu asm
("%""rdx"); register void *__sp asm("rsp"); (void)0; __might_fault
("net/sctp/socket.c", 3050); asm volatile("call __get_user_%P4"
: "=a" (__ret_gu), "=r" (__val_gu), "+r" (__sp) : "0" ((int *
)optval), "i" (sizeof(*((int *)optval)))); (val) = ( __typeof__
(*((int *)optval))) __val_gu; clang_analyzer_taint(&val);
__builtin_expect(__ret_gu, 0); })
)
3051 return -EFAULT14;
3052 if (val)
3053 sp->v4mapped = 1;
3054 else
3055 sp->v4mapped = 0;
3056
3057 return 0;
3058}
3059
3060/*
3061 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3062 * This option will get or set the maximum size to put in any outgoing
3063 * SCTP DATA chunk. If a message is larger than this size it will be
3064 * fragmented by SCTP into the specified size. Note that the underlying
3065 * SCTP implementation may fragment into smaller sized chunks when the
3066 * PMTU of the underlying association is smaller than the value set by
3067 * the user. The default value for this option is '0' which indicates
3068 * the user is NOT limiting fragmentation and only the PMTU will effect
3069 * SCTP's choice of DATA chunk size. Note also that values set larger
3070 * than the maximum size of an IP datagram will effectively let SCTP
3071 * control fragmentation (i.e. the same as setting this option to 0).
3072 *
3073 * The following structure is used to access and modify this parameter:
3074 *
3075 * struct sctp_assoc_value {
3076 * sctp_assoc_t assoc_id;
3077 * uint32_t assoc_value;
3078 * };
3079 *
3080 * assoc_id: This parameter is ignored for one-to-one style sockets.
3081 * For one-to-many style sockets this parameter indicates which
3082 * association the user is performing an action upon. Note that if
3083 * this field's value is zero then the endpoints default value is
3084 * changed (effecting future associations only).
3085 * assoc_value: This parameter specifies the maximum size in bytes.
3086 */
3087static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3088{
3089 struct sctp_assoc_value params;
3090 struct sctp_association *asoc;
3091 struct sctp_sock *sp = sctp_sk(sk);
3092 int val;
3093
3094 if (optlen == sizeof(int)) {
3095 pr_warn_ratelimited(DEPRECATED({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
3096 "%s (pid %d) "({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
3097 "Use of int in maxseg socket option.\n"({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
3098 "Use struct sctp_assoc_value instead\n",({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
3099 current->comm, task_pid_nr(current))({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
;
3100 if (copy_from_user(&val, optval, optlen))
3101 return -EFAULT14;
3102 params.assoc_id = 0;
3103 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3104 if (copy_from_user(&params, optval, optlen))
3105 return -EFAULT14;
3106 val = params.assoc_value;
3107 } else
3108 return -EINVAL22;
3109
3110 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3111 return -EINVAL22;
3112
3113 asoc = sctp_id2assoc(sk, params.assoc_id);
3114 if (!asoc && params.assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
3115 return -EINVAL22;
3116
3117 if (asoc) {
3118 if (val == 0) {
3119 val = asoc->pathmtu;
3120 val -= sp->pf->af->net_header_len;
3121 val -= sizeof(struct sctphdr) +
3122 sizeof(struct sctp_data_chunk);
3123 }
3124 asoc->user_frag = val;
3125 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3126 } else {
3127 sp->user_frag = val;
3128 }
3129
3130 return 0;
3131}
3132
3133
3134/*
3135 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3136 *
3137 * Requests that the peer mark the enclosed address as the association
3138 * primary. The enclosed address must be one of the association's
3139 * locally bound addresses. The following structure is used to make a
3140 * set primary request:
3141 */
3142static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3143 unsigned int optlen)
3144{
3145 struct net *net = sock_net(sk);
3146 struct sctp_sock *sp;
3147 struct sctp_association *asoc = NULL((void *)0);
3148 struct sctp_setpeerprim prim;
3149 struct sctp_chunk *chunk;
3150 struct sctp_af *af;
3151 int err;
3152
3153 sp = sctp_sk(sk);
3154
3155 if (!net->sctp.addip_enable)
3156 return -EPERM1;
3157
3158 if (optlen != sizeof(struct sctp_setpeerprim))
3159 return -EINVAL22;
3160
3161 if (copy_from_user(&prim, optval, optlen))
3162 return -EFAULT14;
3163
3164 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3165 if (!asoc)
3166 return -EINVAL22;
3167
3168 if (!asoc->peer.asconf_capable)
3169 return -EPERM1;
3170
3171 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3172 return -EPERM1;
3173
3174 if (!sctp_state(asoc, ESTABLISHED)__sctp_state((asoc), (SCTP_STATE_ESTABLISHED)))
3175 return -ENOTCONN107;
3176
3177 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3178 if (!af)
3179 return -EINVAL22;
3180
3181 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL((void *)0)))
3182 return -EADDRNOTAVAIL99;
3183
3184 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3185 return -EADDRNOTAVAIL99;
3186
3187 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3188 chunk = sctp_make_asconf_set_prim(asoc,
3189 (union sctp_addr *)&prim.sspp_addr);
3190 if (!chunk)
3191 return -ENOMEM12;
3192
3193 err = sctp_send_asconf(asoc, chunk);
3194
3195 pr_debug("%s: we set peer primary addr primitively\n", __func__)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: we set peer primary addr primitively\n"
), .lineno = 3195, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: we set peer primary addr primitively\n", __func__); } while
(0)
;
3196
3197 return err;
3198}
3199
3200static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3201 unsigned int optlen)
3202{
3203 struct sctp_setadaptation adaptation;
3204
3205 if (optlen != sizeof(struct sctp_setadaptation))
3206 return -EINVAL22;
3207 if (copy_from_user(&adaptation, optval, optlen))
3208 return -EFAULT14;
3209
3210 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3211
3212 return 0;
3213}
3214
3215/*
3216 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3217 *
3218 * The context field in the sctp_sndrcvinfo structure is normally only
3219 * used when a failed message is retrieved holding the value that was
3220 * sent down on the actual send call. This option allows the setting of
3221 * a default context on an association basis that will be received on
3222 * reading messages from the peer. This is especially helpful in the
3223 * one-2-many model for an application to keep some reference to an
3224 * internal state machine that is processing messages on the
3225 * association. Note that the setting of this value only effects
3226 * received messages from the peer and does not effect the value that is
3227 * saved with outbound messages.
3228 */
3229static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3230 unsigned int optlen)
3231{
3232 struct sctp_assoc_value params;
3233 struct sctp_sock *sp;
3234 struct sctp_association *asoc;
3235
3236 if (optlen != sizeof(struct sctp_assoc_value))
3237 return -EINVAL22;
3238 if (copy_from_user(&params, optval, optlen))
3239 return -EFAULT14;
3240
3241 sp = sctp_sk(sk);
3242
3243 if (params.assoc_id != 0) {
3244 asoc = sctp_id2assoc(sk, params.assoc_id);
3245 if (!asoc)
3246 return -EINVAL22;
3247 asoc->default_rcv_context = params.assoc_value;
3248 } else {
3249 sp->default_rcv_context = params.assoc_value;
3250 }
3251
3252 return 0;
3253}
3254
3255/*
3256 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3257 *
3258 * This options will at a minimum specify if the implementation is doing
3259 * fragmented interleave. Fragmented interleave, for a one to many
3260 * socket, is when subsequent calls to receive a message may return
3261 * parts of messages from different associations. Some implementations
3262 * may allow you to turn this value on or off. If so, when turned off,
3263 * no fragment interleave will occur (which will cause a head of line
3264 * blocking amongst multiple associations sharing the same one to many
3265 * socket). When this option is turned on, then each receive call may
3266 * come from a different association (thus the user must receive data
3267 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3268 * association each receive belongs to.
3269 *
3270 * This option takes a boolean value. A non-zero value indicates that
3271 * fragmented interleave is on. A value of zero indicates that
3272 * fragmented interleave is off.
3273 *
3274 * Note that it is important that an implementation that allows this
3275 * option to be turned on, have it off by default. Otherwise an unaware
3276 * application using the one to many model may become confused and act
3277 * incorrectly.
3278 */
3279static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3280 char __user *optval,
3281 unsigned int optlen)
3282{
3283 int val;
3284
3285 if (optlen != sizeof(int))
3286 return -EINVAL22;
3287 if (get_user(val, (int __user *)optval)({ int __ret_gu; register __typeof__(__builtin_choose_expr(sizeof
(*((int *)optval)) > sizeof(0UL), 0ULL, 0UL)) __val_gu asm
("%""rdx"); register void *__sp asm("rsp"); (void)0; __might_fault
("net/sctp/socket.c", 3287); asm volatile("call __get_user_%P4"
: "=a" (__ret_gu), "=r" (__val_gu), "+r" (__sp) : "0" ((int *
)optval), "i" (sizeof(*((int *)optval)))); (val) = ( __typeof__
(*((int *)optval))) __val_gu; clang_analyzer_taint(&val);
__builtin_expect(__ret_gu, 0); })
)
3288 return -EFAULT14;
3289
3290 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3291
3292 return 0;
3293}
3294
3295/*
3296 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3297 * (SCTP_PARTIAL_DELIVERY_POINT)
3298 *
3299 * This option will set or get the SCTP partial delivery point. This
3300 * point is the size of a message where the partial delivery API will be
3301 * invoked to help free up rwnd space for the peer. Setting this to a
3302 * lower value will cause partial deliveries to happen more often. The
3303 * calls argument is an integer that sets or gets the partial delivery
3304 * point. Note also that the call will fail if the user attempts to set
3305 * this value larger than the socket receive buffer size.
3306 *
3307 * Note that any single message having a length smaller than or equal to
3308 * the SCTP partial delivery point will be delivered in one single read
3309 * call as long as the user provided buffer is large enough to hold the
3310 * message.
3311 */
3312static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3313 char __user *optval,
3314 unsigned int optlen)
3315{
3316 u32 val;
3317
3318 if (optlen != sizeof(u32))
3319 return -EINVAL22;
3320 if (get_user(val, (int __user *)optval)({ int __ret_gu; register __typeof__(__builtin_choose_expr(sizeof
(*((int *)optval)) > sizeof(0UL), 0ULL, 0UL)) __val_gu asm
("%""rdx"); register void *__sp asm("rsp"); (void)0; __might_fault
("net/sctp/socket.c", 3320); asm volatile("call __get_user_%P4"
: "=a" (__ret_gu), "=r" (__val_gu), "+r" (__sp) : "0" ((int *
)optval), "i" (sizeof(*((int *)optval)))); (val) = ( __typeof__
(*((int *)optval))) __val_gu; clang_analyzer_taint(&val);
__builtin_expect(__ret_gu, 0); })
)
3321 return -EFAULT14;
3322
3323 /* Note: We double the receive buffer from what the user sets
3324 * it to be, also initial rwnd is based on rcvbuf/2.
3325 */
3326 if (val > (sk->sk_rcvbuf >> 1))
3327 return -EINVAL22;
3328
3329 sctp_sk(sk)->pd_point = val;
3330
3331 return 0; /* is this the right error code? */
3332}
3333
3334/*
3335 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3336 *
3337 * This option will allow a user to change the maximum burst of packets
3338 * that can be emitted by this association. Note that the default value
3339 * is 4, and some implementations may restrict this setting so that it
3340 * can only be lowered.
3341 *
3342 * NOTE: This text doesn't seem right. Do this on a socket basis with
3343 * future associations inheriting the socket value.
3344 */
3345static int sctp_setsockopt_maxburst(struct sock *sk,
3346 char __user *optval,
3347 unsigned int optlen)
3348{
3349 struct sctp_assoc_value params;
3350 struct sctp_sock *sp;
3351 struct sctp_association *asoc;
3352 int val;
3353 int assoc_id = 0;
3354
3355 if (optlen == sizeof(int)) {
3356 pr_warn_ratelimited(DEPRECATED({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in max_burst socket option deprecated.\n"
"Use struct sctp_assoc_value instead\n", get_current()->comm
, task_pid_nr(get_current())); })
3357 "%s (pid %d) "({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in max_burst socket option deprecated.\n"
"Use struct sctp_assoc_value instead\n", get_current()->comm
, task_pid_nr(get_current())); })
3358 "Use of int in max_burst socket option deprecated.\n"({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in max_burst socket option deprecated.\n"
"Use struct sctp_assoc_value instead\n", get_current()->comm
, task_pid_nr(get_current())); })
3359 "Use struct sctp_assoc_value instead\n",({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in max_burst socket option deprecated.\n"
"Use struct sctp_assoc_value instead\n", get_current()->comm
, task_pid_nr(get_current())); })
3360 current->comm, task_pid_nr(current))({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in max_burst socket option deprecated.\n"
"Use struct sctp_assoc_value instead\n", get_current()->comm
, task_pid_nr(get_current())); })
;
3361 if (copy_from_user(&val, optval, optlen))
3362 return -EFAULT14;
3363 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3364 if (copy_from_user(&params, optval, optlen))
3365 return -EFAULT14;
3366 val = params.assoc_value;
3367 assoc_id = params.assoc_id;
3368 } else
3369 return -EINVAL22;
3370
3371 sp = sctp_sk(sk);
3372
3373 if (assoc_id != 0) {
3374 asoc = sctp_id2assoc(sk, assoc_id);
3375 if (!asoc)
3376 return -EINVAL22;
3377 asoc->max_burst = val;
3378 } else
3379 sp->max_burst = val;
3380
3381 return 0;
3382}
3383
3384/*
3385 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3386 *
3387 * This set option adds a chunk type that the user is requesting to be
3388 * received only in an authenticated way. Changes to the list of chunks
3389 * will only effect future associations on the socket.
3390 */
3391static int sctp_setsockopt_auth_chunk(struct sock *sk,
3392 char __user *optval,
3393 unsigned int optlen)
3394{
3395 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3396 struct sctp_authchunk val;
3397
3398 if (!ep->auth_enable)
3399 return -EACCES13;
3400
3401 if (optlen != sizeof(struct sctp_authchunk))
3402 return -EINVAL22;
3403 if (copy_from_user(&val, optval, optlen))
3404 return -EFAULT14;
3405
3406 switch (val.sauth_chunk) {
3407 case SCTP_CID_INIT:
3408 case SCTP_CID_INIT_ACK:
3409 case SCTP_CID_SHUTDOWN_COMPLETE:
3410 case SCTP_CID_AUTH:
3411 return -EINVAL22;
3412 }
3413
3414 /* add this chunk id to the endpoint */
3415 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3416}
3417
3418/*
3419 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3420 *
3421 * This option gets or sets the list of HMAC algorithms that the local
3422 * endpoint requires the peer to use.
3423 */
3424static int sctp_setsockopt_hmac_ident(struct sock *sk,
3425 char __user *optval,
3426 unsigned int optlen)
3427{
3428 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3429 struct sctp_hmacalgo *hmacs;
3430 u32 idents;
3431 int err;
3432
3433 if (!ep->auth_enable)
3434 return -EACCES13;
3435
3436 if (optlen < sizeof(struct sctp_hmacalgo))
3437 return -EINVAL22;
3438
3439 hmacs = memdup_user(optval, optlen);
3440 if (IS_ERR(hmacs))
3441 return PTR_ERR(hmacs);
3442
3443 idents = hmacs->shmac_num_idents;
3444 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS__SCTP_AUTH_HMAC_MAX ||
3445 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3446 err = -EINVAL22;
3447 goto out;
3448 }
3449
3450 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3451out:
3452 kfree(hmacs);
3453 return err;
3454}
3455
3456/*
3457 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3458 *
3459 * This option will set a shared secret key which is used to build an
3460 * association shared key.
3461 */
3462static int sctp_setsockopt_auth_key(struct sock *sk,
3463 char __user *optval,
3464 unsigned int optlen)
3465{
3466 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3467 struct sctp_authkey *authkey;
3468 struct sctp_association *asoc;
3469 int ret;
3470
3471 if (!ep->auth_enable)
3472 return -EACCES13;
3473
3474 if (optlen <= sizeof(struct sctp_authkey))
3475 return -EINVAL22;
3476
3477 authkey = memdup_user(optval, optlen);
3478 if (IS_ERR(authkey))
3479 return PTR_ERR(authkey);
3480
3481 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3482 ret = -EINVAL22;
3483 goto out;
3484 }
3485
3486 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3487 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP))) {
3488 ret = -EINVAL22;
3489 goto out;
3490 }
3491
3492 ret = sctp_auth_set_key(ep, asoc, authkey);
3493out:
3494 kzfree(authkey);
3495 return ret;
3496}
3497
3498/*
3499 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3500 *
3501 * This option will get or set the active shared key to be used to build
3502 * the association shared key.
3503 */
3504static int sctp_setsockopt_active_key(struct sock *sk,
3505 char __user *optval,
3506 unsigned int optlen)
3507{
3508 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3509 struct sctp_authkeyid val;
3510 struct sctp_association *asoc;
3511
3512 if (!ep->auth_enable)
3513 return -EACCES13;
3514
3515 if (optlen != sizeof(struct sctp_authkeyid))
3516 return -EINVAL22;
3517 if (copy_from_user(&val, optval, optlen))
3518 return -EFAULT14;
3519
3520 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3521 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
3522 return -EINVAL22;
3523
3524 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3525}
3526
3527/*
3528 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3529 *
3530 * This set option will delete a shared secret key from use.
3531 */
3532static int sctp_setsockopt_del_key(struct sock *sk,
3533 char __user *optval,
3534 unsigned int optlen)
3535{
3536 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3537 struct sctp_authkeyid val;
3538 struct sctp_association *asoc;
3539
3540 if (!ep->auth_enable)
3541 return -EACCES13;
3542
3543 if (optlen != sizeof(struct sctp_authkeyid))
3544 return -EINVAL22;
3545 if (copy_from_user(&val, optval, optlen))
3546 return -EFAULT14;
3547
3548 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3549 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
3550 return -EINVAL22;
3551
3552 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3553
3554}
3555
3556/*
3557 * 8.1.23 SCTP_AUTO_ASCONF
3558 *
3559 * This option will enable or disable the use of the automatic generation of
3560 * ASCONF chunks to add and delete addresses to an existing association. Note
3561 * that this option has two caveats namely: a) it only affects sockets that
3562 * are bound to all addresses available to the SCTP stack, and b) the system
3563 * administrator may have an overriding control that turns the ASCONF feature
3564 * off no matter what setting the socket option may have.
3565 * This option expects an integer boolean flag, where a non-zero value turns on
3566 * the option, and a zero value turns off the option.
3567 * Note. In this implementation, socket operation overrides default parameter
3568 * being set by sysctl as well as FreeBSD implementation
3569 */
3570static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3571 unsigned int optlen)
3572{
3573 int val;
3574 struct sctp_sock *sp = sctp_sk(sk);
3575
3576 if (optlen < sizeof(int))
3577 return -EINVAL22;
3578 if (get_user(val, (int __user *)optval)({ int __ret_gu; register __typeof__(__builtin_choose_expr(sizeof
(*((int *)optval)) > sizeof(0UL), 0ULL, 0UL)) __val_gu asm
("%""rdx"); register void *__sp asm("rsp"); (void)0; __might_fault
("net/sctp/socket.c", 3578); asm volatile("call __get_user_%P4"
: "=a" (__ret_gu), "=r" (__val_gu), "+r" (__sp) : "0" ((int *
)optval), "i" (sizeof(*((int *)optval)))); (val) = ( __typeof__
(*((int *)optval))) __val_gu; clang_analyzer_taint(&val);
__builtin_expect(__ret_gu, 0); })
)
3579 return -EFAULT14;
3580 if (!sctp_is_ep_boundall(sk) && val)
3581 return -EINVAL22;
3582 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3583 return 0;
3584
3585 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3586 if (val == 0 && sp->do_auto_asconf) {
3587 list_del(&sp->auto_asconf_list);
3588 sp->do_auto_asconf = 0;
3589 } else if (val && !sp->do_auto_asconf) {
3590 list_add_tail(&sp->auto_asconf_list,
3591 &sock_net(sk)->sctp.auto_asconf_splist);
3592 sp->do_auto_asconf = 1;
3593 }
3594 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3595 return 0;
3596}
3597
3598/*
3599 * SCTP_PEER_ADDR_THLDS
3600 *
3601 * This option allows us to alter the partially failed threshold for one or all
3602 * transports in an association. See Section 6.1 of:
3603 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3604 */
3605static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3606 char __user *optval,
3607 unsigned int optlen)
3608{
3609 struct sctp_paddrthlds val;
3610 struct sctp_transport *trans;
3611 struct sctp_association *asoc;
3612
3613 if (optlen < sizeof(struct sctp_paddrthlds))
3614 return -EINVAL22;
3615 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3616 sizeof(struct sctp_paddrthlds)))
3617 return -EFAULT14;
3618
3619
3620 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3621 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3622 if (!asoc)
3623 return -ENOENT2;
3624 list_for_each_entry(trans, &asoc->peer.transport_addr_list,for (trans = ({ const typeof( ((typeof(*trans) *)0)->transports
) *__mptr = ((&asoc->peer.transport_addr_list)->next
); (typeof(*trans) *)( (char *)__mptr - __builtin_offsetof(typeof
(*trans), transports) );}); &trans->transports != (&
asoc->peer.transport_addr_list); trans = ({ const typeof( (
(typeof(*(trans)) *)0)->transports ) *__mptr = ((trans)->
transports.next); (typeof(*(trans)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(trans)), transports) );}))
3625 transports)for (trans = ({ const typeof( ((typeof(*trans) *)0)->transports
) *__mptr = ((&asoc->peer.transport_addr_list)->next
); (typeof(*trans) *)( (char *)__mptr - __builtin_offsetof(typeof
(*trans), transports) );}); &trans->transports != (&
asoc->peer.transport_addr_list); trans = ({ const typeof( (
(typeof(*(trans)) *)0)->transports ) *__mptr = ((trans)->
transports.next); (typeof(*(trans)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(trans)), transports) );}))
{
3626 if (val.spt_pathmaxrxt)
3627 trans->pathmaxrxt = val.spt_pathmaxrxt;
3628 trans->pf_retrans = val.spt_pathpfthld;
3629 }
3630
3631 if (val.spt_pathmaxrxt)
3632 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3633 asoc->pf_retrans = val.spt_pathpfthld;
3634 } else {
3635 trans = sctp_addr_id2transport(sk, &val.spt_address,
3636 val.spt_assoc_id);
3637 if (!trans)
3638 return -ENOENT2;
3639
3640 if (val.spt_pathmaxrxt)
3641 trans->pathmaxrxt = val.spt_pathmaxrxt;
3642 trans->pf_retrans = val.spt_pathpfthld;
3643 }
3644
3645 return 0;
3646}
3647
3648static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3649 char __user *optval,
3650 unsigned int optlen)
3651{
3652 int val;
3653
3654 if (optlen < sizeof(int))
3655 return -EINVAL22;
3656 if (get_user(val, (int __user *) optval)({ int __ret_gu; register __typeof__(__builtin_choose_expr(sizeof
(*((int *) optval)) > sizeof(0UL), 0ULL, 0UL)) __val_gu asm
("%""rdx"); register void *__sp asm("rsp"); (void)0; __might_fault
("net/sctp/socket.c", 3656); asm volatile("call __get_user_%P4"
: "=a" (__ret_gu), "=r" (__val_gu), "+r" (__sp) : "0" ((int *
) optval), "i" (sizeof(*((int *) optval)))); (val) = ( __typeof__
(*((int *) optval))) __val_gu; clang_analyzer_taint(&val)
; __builtin_expect(__ret_gu, 0); })
)
3657 return -EFAULT14;
3658
3659 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3660
3661 return 0;
3662}
3663
3664static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3665 char __user *optval,
3666 unsigned int optlen)
3667{
3668 int val;
3669
3670 if (optlen < sizeof(int))
3671 return -EINVAL22;
3672 if (get_user(val, (int __user *) optval)({ int __ret_gu; register __typeof__(__builtin_choose_expr(sizeof
(*((int *) optval)) > sizeof(0UL), 0ULL, 0UL)) __val_gu asm
("%""rdx"); register void *__sp asm("rsp"); (void)0; __might_fault
("net/sctp/socket.c", 3672); asm volatile("call __get_user_%P4"
: "=a" (__ret_gu), "=r" (__val_gu), "+r" (__sp) : "0" ((int *
) optval), "i" (sizeof(*((int *) optval)))); (val) = ( __typeof__
(*((int *) optval))) __val_gu; clang_analyzer_taint(&val)
; __builtin_expect(__ret_gu, 0); })
)
3673 return -EFAULT14;
3674
3675 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3676
3677 return 0;
3678}
3679
3680static int sctp_setsockopt_pr_supported(struct sock *sk,
3681 char __user *optval,
3682 unsigned int optlen)
3683{
3684 struct sctp_assoc_value params;
3685 struct sctp_association *asoc;
3686 int retval = -EINVAL22;
3687
3688 if (optlen != sizeof(params))
3689 goto out;
3690
3691 if (copy_from_user(&params, optval, optlen)) {
3692 retval = -EFAULT14;
3693 goto out;
3694 }
3695
3696 asoc = sctp_id2assoc(sk, params.assoc_id);
3697 if (asoc) {
3698 asoc->prsctp_enable = !!params.assoc_value;
3699 } else if (!params.assoc_id) {
3700 struct sctp_sock *sp = sctp_sk(sk);
3701
3702 sp->ep->prsctp_enable = !!params.assoc_value;
3703 } else {
3704 goto out;
3705 }
3706
3707 retval = 0;
3708
3709out:
3710 return retval;
3711}
3712
3713static int sctp_setsockopt_default_prinfo(struct sock *sk,
3714 char __user *optval,
3715 unsigned int optlen)
3716{
3717 struct sctp_default_prinfo info;
3718 struct sctp_association *asoc;
3719 int retval = -EINVAL22;
3720
3721 if (optlen != sizeof(info))
3722 goto out;
3723
3724 if (copy_from_user(&info, optval, sizeof(info))) {
3725 retval = -EFAULT14;
3726 goto out;
3727 }
3728
3729 if (info.pr_policy & ~SCTP_PR_SCTP_MASK0x0030)
3730 goto out;
3731
3732 if (info.pr_policy == SCTP_PR_SCTP_NONE0x0000)
3733 info.pr_value = 0;
3734
3735 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3736 if (asoc) {
3737 SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy)do { asoc->default_flags &= ~0x0030; asoc->default_flags
|= info.pr_policy; } while (0)
;
3738 asoc->default_timetolive = info.pr_value;
3739 } else if (!info.pr_assoc_id) {
3740 struct sctp_sock *sp = sctp_sk(sk);
3741
3742 SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy)do { sp->default_flags &= ~0x0030; sp->default_flags
|= info.pr_policy; } while (0)
;
3743 sp->default_timetolive = info.pr_value;
3744 } else {
3745 goto out;
3746 }
3747
3748 retval = 0;
3749
3750out:
3751 return retval;
3752}
3753
3754/* API 6.2 setsockopt(), getsockopt()
3755 *
3756 * Applications use setsockopt() and getsockopt() to set or retrieve
3757 * socket options. Socket options are used to change the default
3758 * behavior of sockets calls. They are described in Section 7.
3759 *
3760 * The syntax is:
3761 *
3762 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3763 * int __user *optlen);
3764 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3765 * int optlen);
3766 *
3767 * sd - the socket descript.
3768 * level - set to IPPROTO_SCTP for all SCTP options.
3769 * optname - the option name.
3770 * optval - the buffer to store the value of the option.
3771 * optlen - the size of the buffer.
3772 */
3773static int sctp_setsockopt(struct sock *sk, int level, int optname,
3774 char __user *optval, unsigned int optlen)
3775{
3776 int retval = 0;
3777
3778 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, optname:%d\n"
), .lineno = 3778, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, optname:%d\n", __func__, sk, optname); } while (
0)
;
3779
3780 /* I can hardly begin to describe how wrong this is. This is
3781 * so broken as to be worse than useless. The API draft
3782 * REALLY is NOT helpful here... I am not convinced that the
3783 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3784 * are at all well-founded.
3785 */
3786 if (level != SOL_SCTP132) {
3787 struct sctp_af *af = sctp_sk(sk)->pf->af;
3788 retval = af->setsockopt(sk, level, optname, optval, optlen);
3789 goto out_nounlock;
3790 }
3791
3792 lock_sock(sk);
3793
3794 switch (optname) {
3795 case SCTP_SOCKOPT_BINDX_ADD100:
3796 /* 'optlen' is the size of the addresses buffer. */
3797 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3798 optlen, SCTP_BINDX_ADD_ADDR0x01);
3799 break;
3800
3801 case SCTP_SOCKOPT_BINDX_REM101:
3802 /* 'optlen' is the size of the addresses buffer. */
3803 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3804 optlen, SCTP_BINDX_REM_ADDR0x02);
3805 break;
3806
3807 case SCTP_SOCKOPT_CONNECTX_OLD107:
3808 /* 'optlen' is the size of the addresses buffer. */
3809 retval = sctp_setsockopt_connectx_old(sk,
3810 (struct sockaddr __user *)optval,
3811 optlen);
3812 break;
3813
3814 case SCTP_SOCKOPT_CONNECTX110:
3815 /* 'optlen' is the size of the addresses buffer. */
3816 retval = sctp_setsockopt_connectx(sk,
3817 (struct sockaddr __user *)optval,
3818 optlen);
3819 break;
3820
3821 case SCTP_DISABLE_FRAGMENTS8:
3822 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3823 break;
3824
3825 case SCTP_EVENTS11:
3826 retval = sctp_setsockopt_events(sk, optval, optlen);
3827 break;
3828
3829 case SCTP_AUTOCLOSE4:
3830 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3831 break;
3832
3833 case SCTP_PEER_ADDR_PARAMS9:
3834 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3835 break;
3836
3837 case SCTP_DELAYED_SACK16:
3838 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3839 break;
3840 case SCTP_PARTIAL_DELIVERY_POINT19:
3841 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3842 break;
3843
3844 case SCTP_INITMSG2:
3845 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3846 break;
3847 case SCTP_DEFAULT_SEND_PARAM10:
3848 retval = sctp_setsockopt_default_send_param(sk, optval,
3849 optlen);
3850 break;
3851 case SCTP_DEFAULT_SNDINFO34:
3852 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3853 break;
3854 case SCTP_PRIMARY_ADDR6:
3855 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3856 break;
3857 case SCTP_SET_PEER_PRIMARY_ADDR5:
3858 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3859 break;
3860 case SCTP_NODELAY3:
3861 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3862 break;
3863 case SCTP_RTOINFO0:
3864 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3865 break;
3866 case SCTP_ASSOCINFO1:
3867 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3868 break;
3869 case SCTP_I_WANT_MAPPED_V4_ADDR12:
3870 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3871 break;
3872 case SCTP_MAXSEG13:
3873 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3874 break;
3875 case SCTP_ADAPTATION_LAYER7:
3876 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3877 break;
3878 case SCTP_CONTEXT17:
3879 retval = sctp_setsockopt_context(sk, optval, optlen);
3880 break;
3881 case SCTP_FRAGMENT_INTERLEAVE18:
3882 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3883 break;
3884 case SCTP_MAX_BURST20:
3885 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3886 break;
3887 case SCTP_AUTH_CHUNK21:
3888 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3889 break;
3890 case SCTP_HMAC_IDENT22:
3891 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3892 break;
3893 case SCTP_AUTH_KEY23:
3894 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3895 break;
3896 case SCTP_AUTH_ACTIVE_KEY24:
3897 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3898 break;
3899 case SCTP_AUTH_DELETE_KEY25:
3900 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3901 break;
3902 case SCTP_AUTO_ASCONF30:
3903 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3904 break;
3905 case SCTP_PEER_ADDR_THLDS31:
3906 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3907 break;
3908 case SCTP_RECVRCVINFO32:
3909 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3910 break;
3911 case SCTP_RECVNXTINFO33:
3912 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3913 break;
3914 case SCTP_PR_SUPPORTED113:
3915 retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
3916 break;
3917 case SCTP_DEFAULT_PRINFO114:
3918 retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
3919 break;
3920 default:
3921 retval = -ENOPROTOOPT92;
3922 break;
3923 }
3924
3925 release_sock(sk);
3926
3927out_nounlock:
3928 return retval;
3929}
3930
3931/* API 3.1.6 connect() - UDP Style Syntax
3932 *
3933 * An application may use the connect() call in the UDP model to initiate an
3934 * association without sending data.
3935 *
3936 * The syntax is:
3937 *
3938 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3939 *
3940 * sd: the socket descriptor to have a new association added to.
3941 *
3942 * nam: the address structure (either struct sockaddr_in or struct
3943 * sockaddr_in6 defined in RFC2553 [7]).
3944 *
3945 * len: the size of the address.
3946 */
3947static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3948 int addr_len)
3949{
3950 int err = 0;
3951 struct sctp_af *af;
3952
3953 lock_sock(sk);
3954
3955 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, sockaddr:%p, addr_len:%d\n"
), .lineno = 3956, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, addr,
addr_len); } while (0)
3956 addr, addr_len)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, sockaddr:%p, addr_len:%d\n"
), .lineno = 3956, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk, addr,
addr_len); } while (0)
;
3957
3958 /* Validate addr_len before calling common connect/connectx routine. */
3959 af = sctp_get_af_specific(addr->sa_family);
3960 if (!af || addr_len < af->sockaddr_len) {
3961 err = -EINVAL22;
3962 } else {
3963 /* Pass correct addr len to common routine (so it knows there
3964 * is only one address being passed.
3965 */
3966 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL((void *)0));
3967 }
3968
3969 release_sock(sk);
3970 return err;
3971}
3972
3973/* FIXME: Write comments. */
3974static int sctp_disconnect(struct sock *sk, int flags)
3975{
3976 return -EOPNOTSUPP95; /* STUB */
3977}
3978
3979/* 4.1.4 accept() - TCP Style Syntax
3980 *
3981 * Applications use accept() call to remove an established SCTP
3982 * association from the accept queue of the endpoint. A new socket
3983 * descriptor will be returned from accept() to represent the newly
3984 * formed association.
3985 */
3986static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3987{
3988 struct sctp_sock *sp;
3989 struct sctp_endpoint *ep;
3990 struct sock *newsk = NULL((void *)0);
3991 struct sctp_association *asoc;
3992 long timeo;
3993 int error = 0;
3994
3995 lock_sock(sk);
3996
3997 sp = sctp_sk(sk);
3998 ep = sp->ep;
3999
4000 if (!sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP))) {
4001 error = -EOPNOTSUPP95;
4002 goto out;
4003 }
4004
4005 if (!sctp_sstate(sk, LISTENING)__sctp_sstate((sk), (SCTP_SS_LISTENING))) {
4006 error = -EINVAL22;
4007 goto out;
4008 }
4009
4010 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK00004000);
4011
4012 error = sctp_wait_for_accept(sk, timeo);
4013 if (error)
4014 goto out;
4015
4016 /* We treat the list of associations on the endpoint as the accept
4017 * queue and pick the first association on the list.
4018 */
4019 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs)({ const typeof( ((struct sctp_association *)0)->asocs ) *
__mptr = (ep->asocs.next); (struct sctp_association *)( (char
*)__mptr - __builtin_offsetof(struct sctp_association, asocs
) );})
;
4020
4021 newsk = sp->pf->create_accept_sk(sk, asoc);
4022 if (!newsk) {
4023 error = -ENOMEM12;
4024 goto out;
4025 }
4026
4027 /* Populate the fields of the newsk from the oldsk and migrate the
4028 * asoc to the newsk.
4029 */
4030 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4031
4032out:
4033 release_sock(sk);
4034 *err = error;
4035 return newsk;
4036}
4037
4038/* The SCTP ioctl handler. */
4039static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4040{
4041 int rc = -ENOTCONN107;
4042
4043 lock_sock(sk);
4044
4045 /*
4046 * SEQPACKET-style sockets in LISTENING state are valid, for
4047 * SCTP, so only discard TCP-style sockets in LISTENING state.
4048 */
4049 if (sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)) && sctp_sstate(sk, LISTENING)__sctp_sstate((sk), (SCTP_SS_LISTENING)))
4050 goto out;
4051
4052 switch (cmd) {
4053 case SIOCINQ0x541B: {
4054 struct sk_buff *skb;
4055 unsigned int amount = 0;
4056
4057 skb = skb_peek(&sk->sk_receive_queue);
4058 if (skb != NULL((void *)0)) {
4059 /*
4060 * We will only return the amount of this packet since
4061 * that is all that will be read.
4062 */
4063 amount = skb->len;
4064 }
4065 rc = put_user(amount, (int __user *)arg)({ int __ret_pu; __typeof__(*((int *)arg)) __pu_val; (void)0;
__might_fault("net/sctp/socket.c", 4065); __pu_val = amount;
switch (sizeof(*((int *)arg))) { case 1: asm volatile("call __put_user_"
"1" : "=a" (__ret_pu) : "0" ((typeof(*((int *)arg)))(__pu_val
)), "c" ((int *)arg) : "ebx"); break; case 2: asm volatile("call __put_user_"
"2" : "=a" (__ret_pu) : "0" ((typeof(*((int *)arg)))(__pu_val
)), "c" ((int *)arg) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*((int *)arg)))(__pu_val
)), "c" ((int *)arg) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*((int *)arg)))(__pu_val
)), "c" ((int *)arg) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*((int *)arg)))(__pu_val
)), "c" ((int *)arg) : "ebx"); break; } __builtin_expect(__ret_pu
, 0); })
;
4066 break;
4067 }
4068 default:
4069 rc = -ENOIOCTLCMD515;
4070 break;
4071 }
4072out:
4073 release_sock(sk);
4074 return rc;
4075}
4076
4077/* This is the function which gets called during socket creation to
4078 * initialized the SCTP-specific portion of the sock.
4079 * The sock structure should already be zero-filled memory.
4080 */
4081static int sctp_init_sock(struct sock *sk)
4082{
4083 struct net *net = sock_net(sk);
4084 struct sctp_sock *sp;
4085
4086 pr_debug("%s: sk:%p\n", __func__, sk)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p\n"
), .lineno = 4086, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p\n", __func__, sk); } while (0)
;
4087
4088 sp = sctp_sk(sk);
4089
4090 /* Initialize the SCTP per socket area. */
4091 switch (sk->sk_type) {
4092 case SOCK_SEQPACKET:
4093 sp->type = SCTP_SOCKET_UDP;
4094 break;
4095 case SOCK_STREAM:
4096 sp->type = SCTP_SOCKET_TCP;
4097 break;
4098 default:
4099 return -ESOCKTNOSUPPORT94;
4100 }
4101
4102 sk->sk_gso_type = SKB_GSO_SCTP;
4103
4104 /* Initialize default send parameters. These parameters can be
4105 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4106 */
4107 sp->default_stream = 0;
4108 sp->default_ppid = 0;
4109 sp->default_flags = 0;
4110 sp->default_context = 0;
4111 sp->default_timetolive = 0;
4112
4113 sp->default_rcv_context = 0;
4114 sp->max_burst = net->sctp.max_burst;
4115
4116 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4117
4118 /* Initialize default setup parameters. These parameters
4119 * can be modified with the SCTP_INITMSG socket option or
4120 * overridden by the SCTP_INIT CMSG.
4121 */
4122 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams(sctp_globals.max_outstreams);
4123 sp->initmsg.sinit_max_instreams = sctp_max_instreams(sctp_globals.max_instreams);
4124 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4125 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4126
4127 /* Initialize default RTO related parameters. These parameters can
4128 * be modified for with the SCTP_RTOINFO socket option.
4129 */
4130 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4131 sp->rtoinfo.srto_max = net->sctp.rto_max;
4132 sp->rtoinfo.srto_min = net->sctp.rto_min;
4133
4134 /* Initialize default association related parameters. These parameters
4135 * can be modified with the SCTP_ASSOCINFO socket option.
4136 */
4137 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4138 sp->assocparams.sasoc_number_peer_destinations = 0;
4139 sp->assocparams.sasoc_peer_rwnd = 0;
4140 sp->assocparams.sasoc_local_rwnd = 0;
4141 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4142
4143 /* Initialize default event subscriptions. By default, all the
4144 * options are off.
4145 */
4146 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4147
4148 /* Default Peer Address Parameters. These defaults can
4149 * be modified via SCTP_PEER_ADDR_PARAMS
4150 */
4151 sp->hbinterval = net->sctp.hb_interval;
4152 sp->pathmaxrxt = net->sctp.max_retrans_path;
4153 sp->pathmtu = 0; /* allow default discovery */
4154 sp->sackdelay = net->sctp.sack_timeout;
4155 sp->sackfreq = 2;
4156 sp->param_flags = SPP_HB_ENABLE |
4157 SPP_PMTUD_ENABLE |
4158 SPP_SACKDELAY_ENABLE;
4159
4160 /* If enabled no SCTP message fragmentation will be performed.
4161 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4162 */
4163 sp->disable_fragments = 0;
4164
4165 /* Enable Nagle algorithm by default. */
4166 sp->nodelay = 0;
4167
4168 sp->recvrcvinfo = 0;
4169 sp->recvnxtinfo = 0;
4170
4171 /* Enable by default. */
4172 sp->v4mapped = 1;
4173
4174 /* Auto-close idle associations after the configured
4175 * number of seconds. A value of 0 disables this
4176 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4177 * for UDP-style sockets only.
4178 */
4179 sp->autoclose = 0;
4180
4181 /* User specified fragmentation limit. */
4182 sp->user_frag = 0;
4183
4184 sp->adaptation_ind = 0;
4185
4186 sp->pf = sctp_get_pf_specific(sk->sk_family__sk_common.skc_family);
4187
4188 /* Control variables for partial data delivery. */
4189 atomic_set(&sp->pd_mode, 0);
4190 skb_queue_head_init(&sp->pd_lobby);
4191 sp->frag_interleave = 0;
4192
4193 /* Create a per socket endpoint structure. Even if we
4194 * change the data structure relationships, this may still
4195 * be useful for storing pre-connect address information.
4196 */
4197 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u))
);
4198 if (!sp->ep)
4199 return -ENOMEM12;
4200
4201 sp->hmac = NULL((void *)0);
4202
4203 sk->sk_destruct = sctp_destruct_sock;
4204
4205 SCTP_DBG_OBJCNT_INC(sock)atomic_inc(&sctp_dbg_objcnt_sock);
4206
4207 local_bh_disable();
4208 percpu_counter_inc(&sctp_sockets_allocated);
4209 sock_prot_inuse_add(net, sk->sk_prot__sk_common.skc_prot, 1);
4210
4211 /* Nothing can fail after this block, otherwise
4212 * sctp_destroy_sock() will be called without addr_wq_lock held
4213 */
4214 if (net->sctp.default_auto_asconf) {
4215 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4216 list_add_tail(&sp->auto_asconf_list,
4217 &net->sctp.auto_asconf_splist);
4218 sp->do_auto_asconf = 1;
4219 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4220 } else {
4221 sp->do_auto_asconf = 0;
4222 }
4223
4224 local_bh_enable();
4225
4226 return 0;
4227}
4228
4229/* Cleanup any SCTP per socket resources. Must be called with
4230 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4231 */
4232static void sctp_destroy_sock(struct sock *sk)
4233{
4234 struct sctp_sock *sp;
4235
4236 pr_debug("%s: sk:%p\n", __func__, sk)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p\n"
), .lineno = 4236, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p\n", __func__, sk); } while (0)
;
4237
4238 /* Release our hold on the endpoint. */
4239 sp = sctp_sk(sk);
4240 /* This could happen during socket init, thus we bail out
4241 * early, since the rest of the below is not setup either.
4242 */
4243 if (sp->ep == NULL((void *)0))
4244 return;
4245
4246 if (sp->do_auto_asconf) {
4247 sp->do_auto_asconf = 0;
4248 list_del(&sp->auto_asconf_list);
4249 }
4250 sctp_endpoint_free(sp->ep);
4251 local_bh_disable();
4252 percpu_counter_dec(&sctp_sockets_allocated);
4253 sock_prot_inuse_add(sock_net(sk), sk->sk_prot__sk_common.skc_prot, -1);
4254 local_bh_enable();
4255}
4256
4257/* Triggered when there are no references on the socket anymore */
4258static void sctp_destruct_sock(struct sock *sk)
4259{
4260 struct sctp_sock *sp = sctp_sk(sk);
4261
4262 /* Free up the HMAC transform. */
4263 crypto_free_shash(sp->hmac);
4264
4265 inet_sock_destruct(sk);
4266}
4267
4268/* API 4.1.7 shutdown() - TCP Style Syntax
4269 * int shutdown(int socket, int how);
4270 *
4271 * sd - the socket descriptor of the association to be closed.
4272 * how - Specifies the type of shutdown. The values are
4273 * as follows:
4274 * SHUT_RD
4275 * Disables further receive operations. No SCTP
4276 * protocol action is taken.
4277 * SHUT_WR
4278 * Disables further send operations, and initiates
4279 * the SCTP shutdown sequence.
4280 * SHUT_RDWR
4281 * Disables further send and receive operations
4282 * and initiates the SCTP shutdown sequence.
4283 */
4284static void sctp_shutdown(struct sock *sk, int how)
4285{
4286 struct net *net = sock_net(sk);
4287 struct sctp_endpoint *ep;
4288
4289 if (!sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)))
4290 return;
4291
4292 ep = sctp_sk(sk)->ep;
4293 if (how & SEND_SHUTDOWN2 && !list_empty(&ep->asocs)) {
4294 struct sctp_association *asoc;
4295
4296 sk->sk_state__sk_common.skc_state = SCTP_SS_CLOSING;
4297 asoc = list_entry(ep->asocs.next,({ const typeof( ((struct sctp_association *)0)->asocs ) *
__mptr = (ep->asocs.next); (struct sctp_association *)( (char
*)__mptr - __builtin_offsetof(struct sctp_association, asocs
) );})
4298 struct sctp_association, asocs)({ const typeof( ((struct sctp_association *)0)->asocs ) *
__mptr = (ep->asocs.next); (struct sctp_association *)( (char
*)__mptr - __builtin_offsetof(struct sctp_association, asocs
) );})
;
4299 sctp_primitive_SHUTDOWN(net, asoc, NULL((void *)0));
4300 }
4301}
4302
4303int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4304 struct sctp_info *info)
4305{
4306 struct sctp_transport *prim;
4307 struct list_head *pos;
4308 int mask;
4309
4310 memset(info, 0, sizeof(*info));
4311 if (!asoc) {
4312 struct sctp_sock *sp = sctp_sk(sk);
4313
4314 info->sctpi_s_autoclose = sp->autoclose;
4315 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4316 info->sctpi_s_pd_point = sp->pd_point;
4317 info->sctpi_s_nodelay = sp->nodelay;
4318 info->sctpi_s_disable_fragments = sp->disable_fragments;
4319 info->sctpi_s_v4mapped = sp->v4mapped;
4320 info->sctpi_s_frag_interleave = sp->frag_interleave;
4321 info->sctpi_s_type = sp->type;
4322
4323 return 0;
4324 }
4325
4326 info->sctpi_tag = asoc->c.my_vtag;
4327 info->sctpi_state = asoc->state;
4328 info->sctpi_rwnd = asoc->a_rwnd;
4329 info->sctpi_unackdata = asoc->unack_data;
4330 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4331 info->sctpi_instrms = asoc->c.sinit_max_instreams;
4332 info->sctpi_outstrms = asoc->c.sinit_num_ostreams;
4333 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)for (pos = (&asoc->base.inqueue.in_chunk_list)->next
; pos != (&asoc->base.inqueue.in_chunk_list); pos = pos
->next)
4334 info->sctpi_inqueue++;
4335 list_for_each(pos, &asoc->outqueue.out_chunk_list)for (pos = (&asoc->outqueue.out_chunk_list)->next; pos
!= (&asoc->outqueue.out_chunk_list); pos = pos->next
)
4336 info->sctpi_outqueue++;
4337 info->sctpi_overall_error = asoc->overall_error_count;
4338 info->sctpi_max_burst = asoc->max_burst;
4339 info->sctpi_maxseg = asoc->frag_point;
4340 info->sctpi_peer_rwnd = asoc->peer.rwnd;
4341 info->sctpi_peer_tag = asoc->c.peer_vtag;
4342
4343 mask = asoc->peer.ecn_capable << 1;
4344 mask = (mask | asoc->peer.ipv4_address) << 1;
4345 mask = (mask | asoc->peer.ipv6_address) << 1;
4346 mask = (mask | asoc->peer.hostname_address) << 1;
4347 mask = (mask | asoc->peer.asconf_capable) << 1;
4348 mask = (mask | asoc->peer.prsctp_capable) << 1;
4349 mask = (mask | asoc->peer.auth_capable);
4350 info->sctpi_peer_capable = mask;
4351 mask = asoc->peer.sack_needed << 1;
4352 mask = (mask | asoc->peer.sack_generation) << 1;
4353 mask = (mask | asoc->peer.zero_window_announced);
4354 info->sctpi_peer_sack = mask;
4355
4356 info->sctpi_isacks = asoc->stats.isacks;
4357 info->sctpi_osacks = asoc->stats.osacks;
4358 info->sctpi_opackets = asoc->stats.opackets;
4359 info->sctpi_ipackets = asoc->stats.ipackets;
4360 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4361 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4362 info->sctpi_idupchunks = asoc->stats.idupchunks;
4363 info->sctpi_gapcnt = asoc->stats.gapcnt;
4364 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4365 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4366 info->sctpi_oodchunks = asoc->stats.oodchunks;
4367 info->sctpi_iodchunks = asoc->stats.iodchunks;
4368 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4369 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4370
4371 prim = asoc->peer.primary_path;
4372 memcpy(&info->sctpi_p_address, &prim->ipaddr,({ size_t __len = (sizeof(struct __kernel_sockaddr_storage));
void *__ret; if (__builtin_constant_p(sizeof(struct __kernel_sockaddr_storage
)) && __len >= 64) __ret = __memcpy((&info->
sctpi_p_address), (&prim->ipaddr), __len); else __ret =
__builtin_memcpy((&info->sctpi_p_address), (&prim
->ipaddr), __len); __ret; })
4373 sizeof(struct sockaddr_storage))({ size_t __len = (sizeof(struct __kernel_sockaddr_storage));
void *__ret; if (__builtin_constant_p(sizeof(struct __kernel_sockaddr_storage
)) && __len >= 64) __ret = __memcpy((&info->
sctpi_p_address), (&prim->ipaddr), __len); else __ret =
__builtin_memcpy((&info->sctpi_p_address), (&prim
->ipaddr), __len); __ret; })
;
4374 info->sctpi_p_state = prim->state;
4375 info->sctpi_p_cwnd = prim->cwnd;
4376 info->sctpi_p_srtt = prim->srtt;
4377 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4378 info->sctpi_p_hbinterval = prim->hbinterval;
4379 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4380 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4381 info->sctpi_p_ssthresh = prim->ssthresh;
4382 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4383 info->sctpi_p_flight_size = prim->flight_size;
4384 info->sctpi_p_error = prim->error_count;
4385
4386 return 0;
4387}
4388EXPORT_SYMBOL_GPL(sctp_get_sctp_info)extern typeof(sctp_get_sctp_info) sctp_get_sctp_info; extern void
*__crc_sctp_get_sctp_info __attribute__((weak)); static const
unsigned long __kcrctab_sctp_get_sctp_info __attribute__((__used__
)) __attribute__((section("___kcrctab" "_gpl" "+" "sctp_get_sctp_info"
), used)) = (unsigned long) &__crc_sctp_get_sctp_info; static
const char __kstrtab_sctp_get_sctp_info[] __attribute__((section
("__ksymtab_strings"), aligned(1))) = "sctp_get_sctp_info"; static
const struct kernel_symbol __ksymtab_sctp_get_sctp_info __attribute__
((__used__)) __attribute__((section("___ksymtab" "_gpl" "+" "sctp_get_sctp_info"
), used)) = { (unsigned long)&sctp_get_sctp_info, __kstrtab_sctp_get_sctp_info
}
;
4389
4390/* use callback to avoid exporting the core structure */
4391int sctp_transport_walk_start(struct rhashtable_iter *iter)
4392{
4393 int err;
4394
4395 err = rhashtable_walk_init(&sctp_transport_hashtable(sctp_globals.transport_hashtable), iter,
4396 GFP_KERNEL((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u))
);
4397 if (err)
4398 return err;
4399
4400 err = rhashtable_walk_start(iter);
4401 if (err && err != -EAGAIN11) {
4402 rhashtable_walk_stop(iter);
4403 rhashtable_walk_exit(iter);
4404 return err;
4405 }
4406
4407 return 0;
4408}
4409
4410void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4411{
4412 rhashtable_walk_stop(iter);
4413 rhashtable_walk_exit(iter);
4414}
4415
4416struct sctp_transport *sctp_transport_get_next(struct net *net,
4417 struct rhashtable_iter *iter)
4418{
4419 struct sctp_transport *t;
4420
4421 t = rhashtable_walk_next(iter);
4422 for (; t; t = rhashtable_walk_next(iter)) {
4423 if (IS_ERR(t)) {
4424 if (PTR_ERR(t) == -EAGAIN11)
4425 continue;
4426 break;
4427 }
4428
4429 if (net_eq(sock_net(t->asoc->base.sk), net) &&
4430 t->asoc->peer.primary_path == t)
4431 break;
4432 }
4433
4434 return t;
4435}
4436
4437struct sctp_transport *sctp_transport_get_idx(struct net *net,
4438 struct rhashtable_iter *iter,
4439 int pos)
4440{
4441 void *obj = SEQ_START_TOKEN((void *)1);
4442
4443 while (pos && (obj = sctp_transport_get_next(net, iter)) &&
4444 !IS_ERR(obj))
4445 pos--;
4446
4447 return obj;
4448}
4449
4450int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
4451 void *p) {
4452 int err = 0;
4453 int hash = 0;
4454 struct sctp_ep_common *epb;
4455 struct sctp_hashbucket *head;
4456
4457 for (head = sctp_ep_hashtable(sctp_globals.ep_hashtable); hash < sctp_ep_hashsize(sctp_globals.ep_hashsize);
4458 hash++, head++) {
4459 read_lock(&head->lock)_raw_read_lock(&head->lock);
4460 sctp_for_each_hentry(epb, &head->chain)for (epb = ({ typeof((&head->chain)->first) ____ptr
= ((&head->chain)->first); ____ptr ? ({ const typeof
( ((typeof(*(epb)) *)0)->node ) *__mptr = (____ptr); (typeof
(*(epb)) *)( (char *)__mptr - __builtin_offsetof(typeof(*(epb
)), node) );}) : ((void *)0); }); epb; epb = ({ typeof((epb)->
node.next) ____ptr = ((epb)->node.next); ____ptr ? ({ const
typeof( ((typeof(*(epb)) *)0)->node ) *__mptr = (____ptr)
; (typeof(*(epb)) *)( (char *)__mptr - __builtin_offsetof(typeof
(*(epb)), node) );}) : ((void *)0); }))
{
4461 err = cb(sctp_ep(epb), p);
4462 if (err)
4463 break;
4464 }
4465 read_unlock(&head->lock)_raw_read_unlock(&head->lock);
4466 }
4467
4468 return err;
4469}
4470EXPORT_SYMBOL_GPL(sctp_for_each_endpoint)extern typeof(sctp_for_each_endpoint) sctp_for_each_endpoint;
extern void *__crc_sctp_for_each_endpoint __attribute__((weak
)); static const unsigned long __kcrctab_sctp_for_each_endpoint
__attribute__((__used__)) __attribute__((section("___kcrctab"
"_gpl" "+" "sctp_for_each_endpoint"), used)) = (unsigned long
) &__crc_sctp_for_each_endpoint; static const char __kstrtab_sctp_for_each_endpoint
[] __attribute__((section("__ksymtab_strings"), aligned(1))) =
"sctp_for_each_endpoint"; static const struct kernel_symbol __ksymtab_sctp_for_each_endpoint
__attribute__((__used__)) __attribute__((section("___ksymtab"
"_gpl" "+" "sctp_for_each_endpoint"), used)) = { (unsigned long
)&sctp_for_each_endpoint, __kstrtab_sctp_for_each_endpoint
}
;
4471
4472int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
4473 struct net *net,
4474 const union sctp_addr *laddr,
4475 const union sctp_addr *paddr, void *p)
4476{
4477 struct sctp_transport *transport;
4478 int err = -ENOENT2;
4479
4480 rcu_read_lock();
4481 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
4482 if (!transport || !sctp_transport_hold(transport))
4483 goto out;
4484
4485 rcu_read_unlock();
4486 err = cb(transport, p);
4487 sctp_transport_put(transport);
4488
4489out:
4490 return err;
4491}
4492EXPORT_SYMBOL_GPL(sctp_transport_lookup_process)extern typeof(sctp_transport_lookup_process) sctp_transport_lookup_process
; extern void *__crc_sctp_transport_lookup_process __attribute__
((weak)); static const unsigned long __kcrctab_sctp_transport_lookup_process
__attribute__((__used__)) __attribute__((section("___kcrctab"
"_gpl" "+" "sctp_transport_lookup_process"), used)) = (unsigned
long) &__crc_sctp_transport_lookup_process; static const
char __kstrtab_sctp_transport_lookup_process[] __attribute__
((section("__ksymtab_strings"), aligned(1))) = "sctp_transport_lookup_process"
; static const struct kernel_symbol __ksymtab_sctp_transport_lookup_process
__attribute__((__used__)) __attribute__((section("___ksymtab"
"_gpl" "+" "sctp_transport_lookup_process"), used)) = { (unsigned
long)&sctp_transport_lookup_process, __kstrtab_sctp_transport_lookup_process
}
;
4493
4494int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
4495 struct net *net, int pos, void *p) {
4496 struct rhashtable_iter hti;
4497 void *obj;
4498 int err;
4499
4500 err = sctp_transport_walk_start(&hti);
4501 if (err)
4502 return err;
4503
4504 sctp_transport_get_idx(net, &hti, pos);
4505 obj = sctp_transport_get_next(net, &hti);
4506 for (; obj && !IS_ERR(obj); obj = sctp_transport_get_next(net, &hti)) {
4507 struct sctp_transport *transport = obj;
4508
4509 if (!sctp_transport_hold(transport))
4510 continue;
4511 err = cb(transport, p);
4512 sctp_transport_put(transport);
4513 if (err)
4514 break;
4515 }
4516 sctp_transport_walk_stop(&hti);
4517
4518 return err;
4519}
4520EXPORT_SYMBOL_GPL(sctp_for_each_transport)extern typeof(sctp_for_each_transport) sctp_for_each_transport
; extern void *__crc_sctp_for_each_transport __attribute__((weak
)); static const unsigned long __kcrctab_sctp_for_each_transport
__attribute__((__used__)) __attribute__((section("___kcrctab"
"_gpl" "+" "sctp_for_each_transport"), used)) = (unsigned long
) &__crc_sctp_for_each_transport; static const char __kstrtab_sctp_for_each_transport
[] __attribute__((section("__ksymtab_strings"), aligned(1))) =
"sctp_for_each_transport"; static const struct kernel_symbol
__ksymtab_sctp_for_each_transport __attribute__((__used__)) __attribute__
((section("___ksymtab" "_gpl" "+" "sctp_for_each_transport"),
used)) = { (unsigned long)&sctp_for_each_transport, __kstrtab_sctp_for_each_transport
}
;
4521
4522/* 7.2.1 Association Status (SCTP_STATUS)
4523
4524 * Applications can retrieve current status information about an
4525 * association, including association state, peer receiver window size,
4526 * number of unacked data chunks, and number of data chunks pending
4527 * receipt. This information is read-only.
4528 */
4529static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4530 char __user *optval,
4531 int __user *optlen)
4532{
4533 struct sctp_status status;
4534 struct sctp_association *asoc = NULL((void *)0);
4535 struct sctp_transport *transport;
4536 sctp_assoc_t associd;
4537 int retval = 0;
4538
4539 if (len < sizeof(status)) {
4540 retval = -EINVAL22;
4541 goto out;
4542 }
4543
4544 len = sizeof(status);
4545 if (copy_from_user(&status, optval, len)) {
4546 retval = -EFAULT14;
4547 goto out;
4548 }
4549
4550 associd = status.sstat_assoc_id;
4551 asoc = sctp_id2assoc(sk, associd);
4552 if (!asoc) {
4553 retval = -EINVAL22;
4554 goto out;
4555 }
4556
4557 transport = asoc->peer.primary_path;
4558
4559 status.sstat_assoc_id = sctp_assoc2id(asoc);
4560 status.sstat_state = sctp_assoc_to_state(asoc);
4561 status.sstat_rwnd = asoc->peer.rwnd;
4562 status.sstat_unackdata = asoc->unack_data;
4563
4564 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4565 status.sstat_instrms = asoc->c.sinit_max_instreams;
4566 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4567 status.sstat_fragmentation_point = asoc->frag_point;
4568 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4569 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,({ size_t __len = (transport->af_specific->sockaddr_len
); void *__ret; if (__builtin_constant_p(transport->af_specific
->sockaddr_len) && __len >= 64) __ret = __memcpy
((&status.sstat_primary.spinfo_address), (&transport->
ipaddr), __len); else __ret = __builtin_memcpy((&status.sstat_primary
.spinfo_address), (&transport->ipaddr), __len); __ret;
})
4570 transport->af_specific->sockaddr_len)({ size_t __len = (transport->af_specific->sockaddr_len
); void *__ret; if (__builtin_constant_p(transport->af_specific
->sockaddr_len) && __len >= 64) __ret = __memcpy
((&status.sstat_primary.spinfo_address), (&transport->
ipaddr), __len); else __ret = __builtin_memcpy((&status.sstat_primary
.spinfo_address), (&transport->ipaddr), __len); __ret;
})
;
4571 /* Map ipv4 address into v4-mapped-on-v6 address. */
4572 sctp_get_pf_specific(sk->sk_family__sk_common.skc_family)->addr_to_user(sctp_sk(sk),
4573 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4574 status.sstat_primary.spinfo_state = transport->state;
4575 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4576 status.sstat_primary.spinfo_srtt = transport->srtt;
4577 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4578 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4579
4580 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4581 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4582
4583 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 4583); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
) {
4584 retval = -EFAULT14;
4585 goto out;
4586 }
4587
4588 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n"
), .lineno = 4590, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", __func__, len
, status.sstat_state, status.sstat_rwnd, status.sstat_assoc_id
); } while (0)
4589 __func__, len, status.sstat_state, status.sstat_rwnd,do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n"
), .lineno = 4590, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", __func__, len
, status.sstat_state, status.sstat_rwnd, status.sstat_assoc_id
); } while (0)
4590 status.sstat_assoc_id)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n"
), .lineno = 4590, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n", __func__, len
, status.sstat_state, status.sstat_rwnd, status.sstat_assoc_id
); } while (0)
;
4591
4592 if (copy_to_user(optval, &status, len)) {
4593 retval = -EFAULT14;
4594 goto out;
4595 }
4596
4597out:
4598 return retval;
4599}
4600
4601
4602/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4603 *
4604 * Applications can retrieve information about a specific peer address
4605 * of an association, including its reachability state, congestion
4606 * window, and retransmission timer values. This information is
4607 * read-only.
4608 */
4609static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4610 char __user *optval,
4611 int __user *optlen)
4612{
4613 struct sctp_paddrinfo pinfo;
4614 struct sctp_transport *transport;
4615 int retval = 0;
4616
4617 if (len < sizeof(pinfo)) {
4618 retval = -EINVAL22;
4619 goto out;
4620 }
4621
4622 len = sizeof(pinfo);
4623 if (copy_from_user(&pinfo, optval, len)) {
4624 retval = -EFAULT14;
4625 goto out;
4626 }
4627
4628 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4629 pinfo.spinfo_assoc_id);
4630 if (!transport)
4631 return -EINVAL22;
4632
4633 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4634 pinfo.spinfo_state = transport->state;
4635 pinfo.spinfo_cwnd = transport->cwnd;
4636 pinfo.spinfo_srtt = transport->srtt;
4637 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4638 pinfo.spinfo_mtu = transport->pathmtu;
4639
4640 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4641 pinfo.spinfo_state = SCTP_ACTIVE;
4642
4643 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 4643); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
) {
4644 retval = -EFAULT14;
4645 goto out;
4646 }
4647
4648 if (copy_to_user(optval, &pinfo, len)) {
4649 retval = -EFAULT14;
4650 goto out;
4651 }
4652
4653out:
4654 return retval;
4655}
4656
4657/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4658 *
4659 * This option is a on/off flag. If enabled no SCTP message
4660 * fragmentation will be performed. Instead if a message being sent
4661 * exceeds the current PMTU size, the message will NOT be sent and
4662 * instead a error will be indicated to the user.
4663 */
4664static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4665 char __user *optval, int __user *optlen)
4666{
4667 int val;
4668
4669 if (len < sizeof(int))
4670 return -EINVAL22;
4671
4672 len = sizeof(int);
4673 val = (sctp_sk(sk)->disable_fragments == 1);
4674 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 4674); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
4675 return -EFAULT14;
4676 if (copy_to_user(optval, &val, len))
4677 return -EFAULT14;
4678 return 0;
4679}
4680
4681/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4682 *
4683 * This socket option is used to specify various notifications and
4684 * ancillary data the user wishes to receive.
4685 */
4686static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4687 int __user *optlen)
4688{
4689 if (len == 0)
4690 return -EINVAL22;
4691 if (len > sizeof(struct sctp_event_subscribe))
4692 len = sizeof(struct sctp_event_subscribe);
4693 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 4693); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
4694 return -EFAULT14;
4695 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4696 return -EFAULT14;
4697 return 0;
4698}
4699
4700/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4701 *
4702 * This socket option is applicable to the UDP-style socket only. When
4703 * set it will cause associations that are idle for more than the
4704 * specified number of seconds to automatically close. An association
4705 * being idle is defined an association that has NOT sent or received
4706 * user data. The special value of '0' indicates that no automatic
4707 * close of any associations should be performed. The option expects an
4708 * integer defining the number of seconds of idle time before an
4709 * association is closed.
4710 */
4711static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4712{
4713 /* Applicable to UDP-style socket only */
4714 if (sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)))
4715 return -EOPNOTSUPP95;
4716 if (len < sizeof(int))
4717 return -EINVAL22;
4718 len = sizeof(int);
4719 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 4719); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
4720 return -EFAULT14;
4721 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4722 return -EFAULT14;
4723 return 0;
4724}
4725
4726/* Helper routine to branch off an association to a new socket. */
4727int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4728{
4729 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4730 struct sctp_sock *sp = sctp_sk(sk);
4731 struct socket *sock;
4732 int err = 0;
4733
4734 if (!asoc)
4735 return -EINVAL22;
4736
4737 /* An association cannot be branched off from an already peeled-off
4738 * socket, nor is this supported for tcp style sockets.
4739 */
4740 if (!sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
4741 return -EINVAL22;
4742
4743 /* Create a new socket. */
4744 err = sock_create(sk->sk_family__sk_common.skc_family, SOCK_SEQPACKET, IPPROTO_SCTPIPPROTO_SCTP, &sock);
4745 if (err < 0)
4746 return err;
4747
4748 sctp_copy_sock(sock->sk, sk, asoc);
4749
4750 /* Make peeled-off sockets more like 1-1 accepted sockets.
4751 * Set the daddr and initialize id to something more random
4752 */
4753 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4754
4755 /* Populate the fields of the newsk from the oldsk and migrate the
4756 * asoc to the newsk.
4757 */
4758 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4759
4760 *sockp = sock;
4761
4762 return err;
4763}
4764EXPORT_SYMBOL(sctp_do_peeloff)extern typeof(sctp_do_peeloff) sctp_do_peeloff; extern void *
__crc_sctp_do_peeloff __attribute__((weak)); static const unsigned
long __kcrctab_sctp_do_peeloff __attribute__((__used__)) __attribute__
((section("___kcrctab" "" "+" "sctp_do_peeloff"), used)) = (unsigned
long) &__crc_sctp_do_peeloff; static const char __kstrtab_sctp_do_peeloff
[] __attribute__((section("__ksymtab_strings"), aligned(1))) =
"sctp_do_peeloff"; static const struct kernel_symbol __ksymtab_sctp_do_peeloff
__attribute__((__used__)) __attribute__((section("___ksymtab"
"" "+" "sctp_do_peeloff"), used)) = { (unsigned long)&sctp_do_peeloff
, __kstrtab_sctp_do_peeloff }
;
4765
4766static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4767{
4768 sctp_peeloff_arg_t peeloff;
4769 struct socket *newsock;
4770 struct file *newfile;
4771 int retval = 0;
4772
4773 if (len < sizeof(sctp_peeloff_arg_t))
4774 return -EINVAL22;
4775 len = sizeof(sctp_peeloff_arg_t);
4776 if (copy_from_user(&peeloff, optval, len))
4777 return -EFAULT14;
4778
4779 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4780 if (retval < 0)
4781 goto out;
4782
4783 /* Map the socket to an unused fd that can be returned to the user. */
4784 retval = get_unused_fd_flags(0);
4785 if (retval < 0) {
4786 sock_release(newsock);
4787 goto out;
4788 }
4789
4790 newfile = sock_alloc_file(newsock, 0, NULL((void *)0));
4791 if (IS_ERR(newfile)) {
4792 put_unused_fd(retval);
4793 sock_release(newsock);
4794 return PTR_ERR(newfile);
4795 }
4796
4797 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, newsk:%p, sd:%d\n"
), .lineno = 4798, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk
, retval); } while (0)
4798 retval)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, newsk:%p, sd:%d\n"
), .lineno = 4798, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk
, retval); } while (0)
;
4799
4800 /* Return the fd mapped to the new socket. */
4801 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 4801); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
) {
4802 fput(newfile);
4803 put_unused_fd(retval);
4804 return -EFAULT14;
4805 }
4806 peeloff.sd = retval;
4807 if (copy_to_user(optval, &peeloff, len)) {
4808 fput(newfile);
4809 put_unused_fd(retval);
4810 return -EFAULT14;
4811 }
4812 fd_install(retval, newfile);
4813out:
4814 return retval;
4815}
4816
4817/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4818 *
4819 * Applications can enable or disable heartbeats for any peer address of
4820 * an association, modify an address's heartbeat interval, force a
4821 * heartbeat to be sent immediately, and adjust the address's maximum
4822 * number of retransmissions sent before an address is considered
4823 * unreachable. The following structure is used to access and modify an
4824 * address's parameters:
4825 *
4826 * struct sctp_paddrparams {
4827 * sctp_assoc_t spp_assoc_id;
4828 * struct sockaddr_storage spp_address;
4829 * uint32_t spp_hbinterval;
4830 * uint16_t spp_pathmaxrxt;
4831 * uint32_t spp_pathmtu;
4832 * uint32_t spp_sackdelay;
4833 * uint32_t spp_flags;
4834 * };
4835 *
4836 * spp_assoc_id - (one-to-many style socket) This is filled in the
4837 * application, and identifies the association for
4838 * this query.
4839 * spp_address - This specifies which address is of interest.
4840 * spp_hbinterval - This contains the value of the heartbeat interval,
4841 * in milliseconds. If a value of zero
4842 * is present in this field then no changes are to
4843 * be made to this parameter.
4844 * spp_pathmaxrxt - This contains the maximum number of
4845 * retransmissions before this address shall be
4846 * considered unreachable. If a value of zero
4847 * is present in this field then no changes are to
4848 * be made to this parameter.
4849 * spp_pathmtu - When Path MTU discovery is disabled the value
4850 * specified here will be the "fixed" path mtu.
4851 * Note that if the spp_address field is empty
4852 * then all associations on this address will
4853 * have this fixed path mtu set upon them.
4854 *
4855 * spp_sackdelay - When delayed sack is enabled, this value specifies
4856 * the number of milliseconds that sacks will be delayed
4857 * for. This value will apply to all addresses of an
4858 * association if the spp_address field is empty. Note
4859 * also, that if delayed sack is enabled and this
4860 * value is set to 0, no change is made to the last
4861 * recorded delayed sack timer value.
4862 *
4863 * spp_flags - These flags are used to control various features
4864 * on an association. The flag field may contain
4865 * zero or more of the following options.
4866 *
4867 * SPP_HB_ENABLE - Enable heartbeats on the
4868 * specified address. Note that if the address
4869 * field is empty all addresses for the association
4870 * have heartbeats enabled upon them.
4871 *
4872 * SPP_HB_DISABLE - Disable heartbeats on the
4873 * speicifed address. Note that if the address
4874 * field is empty all addresses for the association
4875 * will have their heartbeats disabled. Note also
4876 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4877 * mutually exclusive, only one of these two should
4878 * be specified. Enabling both fields will have
4879 * undetermined results.
4880 *
4881 * SPP_HB_DEMAND - Request a user initiated heartbeat
4882 * to be made immediately.
4883 *
4884 * SPP_PMTUD_ENABLE - This field will enable PMTU
4885 * discovery upon the specified address. Note that
4886 * if the address feild is empty then all addresses
4887 * on the association are effected.
4888 *
4889 * SPP_PMTUD_DISABLE - This field will disable PMTU
4890 * discovery upon the specified address. Note that
4891 * if the address feild is empty then all addresses
4892 * on the association are effected. Not also that
4893 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4894 * exclusive. Enabling both will have undetermined
4895 * results.
4896 *
4897 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4898 * on delayed sack. The time specified in spp_sackdelay
4899 * is used to specify the sack delay for this address. Note
4900 * that if spp_address is empty then all addresses will
4901 * enable delayed sack and take on the sack delay
4902 * value specified in spp_sackdelay.
4903 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4904 * off delayed sack. If the spp_address field is blank then
4905 * delayed sack is disabled for the entire association. Note
4906 * also that this field is mutually exclusive to
4907 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4908 * results.
4909 */
4910static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4911 char __user *optval, int __user *optlen)
4912{
4913 struct sctp_paddrparams params;
4914 struct sctp_transport *trans = NULL((void *)0);
4915 struct sctp_association *asoc = NULL((void *)0);
4916 struct sctp_sock *sp = sctp_sk(sk);
4917
4918 if (len < sizeof(struct sctp_paddrparams))
4919 return -EINVAL22;
4920 len = sizeof(struct sctp_paddrparams);
4921 if (copy_from_user(&params, optval, len))
4922 return -EFAULT14;
4923
4924 /* If an address other than INADDR_ANY is specified, and
4925 * no transport is found, then the request is invalid.
4926 */
4927 if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4928 trans = sctp_addr_id2transport(sk, &params.spp_address,
4929 params.spp_assoc_id);
4930 if (!trans) {
4931 pr_debug("%s: failed no transport\n", __func__)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: failed no transport\n"
), .lineno = 4931, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: failed no transport\n", __func__); } while (0)
;
4932 return -EINVAL22;
4933 }
4934 }
4935
4936 /* Get association, if assoc_id != 0 and the socket is a one
4937 * to many style socket, and an association was not found, then
4938 * the id was invalid.
4939 */
4940 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4941 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP))) {
4942 pr_debug("%s: failed no association\n", __func__)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: failed no association\n"
), .lineno = 4942, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: failed no association\n", __func__); } while (0)
;
4943 return -EINVAL22;
4944 }
4945
4946 if (trans) {
4947 /* Fetch transport values. */
4948 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4949 params.spp_pathmtu = trans->pathmtu;
4950 params.spp_pathmaxrxt = trans->pathmaxrxt;
4951 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4952
4953 /*draft-11 doesn't say what to return in spp_flags*/
4954 params.spp_flags = trans->param_flags;
4955 } else if (asoc) {
4956 /* Fetch association values. */
4957 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4958 params.spp_pathmtu = asoc->pathmtu;
4959 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4960 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4961
4962 /*draft-11 doesn't say what to return in spp_flags*/
4963 params.spp_flags = asoc->param_flags;
4964 } else {
4965 /* Fetch socket values. */
4966 params.spp_hbinterval = sp->hbinterval;
4967 params.spp_pathmtu = sp->pathmtu;
4968 params.spp_sackdelay = sp->sackdelay;
4969 params.spp_pathmaxrxt = sp->pathmaxrxt;
4970
4971 /*draft-11 doesn't say what to return in spp_flags*/
4972 params.spp_flags = sp->param_flags;
4973 }
4974
4975 if (copy_to_user(optval, &params, len))
4976 return -EFAULT14;
4977
4978 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 4978); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
4979 return -EFAULT14;
4980
4981 return 0;
4982}
4983
4984/*
4985 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4986 *
4987 * This option will effect the way delayed acks are performed. This
4988 * option allows you to get or set the delayed ack time, in
4989 * milliseconds. It also allows changing the delayed ack frequency.
4990 * Changing the frequency to 1 disables the delayed sack algorithm. If
4991 * the assoc_id is 0, then this sets or gets the endpoints default
4992 * values. If the assoc_id field is non-zero, then the set or get
4993 * effects the specified association for the one to many model (the
4994 * assoc_id field is ignored by the one to one model). Note that if
4995 * sack_delay or sack_freq are 0 when setting this option, then the
4996 * current values will remain unchanged.
4997 *
4998 * struct sctp_sack_info {
4999 * sctp_assoc_t sack_assoc_id;
5000 * uint32_t sack_delay;
5001 * uint32_t sack_freq;
5002 * };
5003 *
5004 * sack_assoc_id - This parameter, indicates which association the user
5005 * is performing an action upon. Note that if this field's value is
5006 * zero then the endpoints default value is changed (effecting future
5007 * associations only).
5008 *
5009 * sack_delay - This parameter contains the number of milliseconds that
5010 * the user is requesting the delayed ACK timer be set to. Note that
5011 * this value is defined in the standard to be between 200 and 500
5012 * milliseconds.
5013 *
5014 * sack_freq - This parameter contains the number of packets that must
5015 * be received before a sack is sent without waiting for the delay
5016 * timer to expire. The default value for this is 2, setting this
5017 * value to 1 will disable the delayed sack algorithm.
5018 */
5019static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5020 char __user *optval,
5021 int __user *optlen)
5022{
5023 struct sctp_sack_info params;
5024 struct sctp_association *asoc = NULL((void *)0);
5025 struct sctp_sock *sp = sctp_sk(sk);
5026
5027 if (len >= sizeof(struct sctp_sack_info)) {
5028 len = sizeof(struct sctp_sack_info);
5029
5030 if (copy_from_user(&params, optval, len))
5031 return -EFAULT14;
5032 } else if (len == sizeof(struct sctp_assoc_value)) {
5033 pr_warn_ratelimited(DEPRECATED({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n", get_current()->comm
, task_pid_nr(get_current())); })
5034 "%s (pid %d) "({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n", get_current()->comm
, task_pid_nr(get_current())); })
5035 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n", get_current()->comm
, task_pid_nr(get_current())); })
5036 "Use struct sctp_sack_info instead\n",({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n", get_current()->comm
, task_pid_nr(get_current())); })
5037 current->comm, task_pid_nr(current))({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
"Use struct sctp_sack_info instead\n", get_current()->comm
, task_pid_nr(get_current())); })
;
5038 if (copy_from_user(&params, optval, len))
5039 return -EFAULT14;
5040 } else
5041 return -EINVAL22;
5042
5043 /* Get association, if sack_assoc_id != 0 and the socket is a one
5044 * to many style socket, and an association was not found, then
5045 * the id was invalid.
5046 */
5047 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5048 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
5049 return -EINVAL22;
5050
5051 if (asoc) {
5052 /* Fetch association values. */
5053 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5054 params.sack_delay = jiffies_to_msecs(
5055 asoc->sackdelay);
5056 params.sack_freq = asoc->sackfreq;
5057
5058 } else {
5059 params.sack_delay = 0;
5060 params.sack_freq = 1;
5061 }
5062 } else {
5063 /* Fetch socket values. */
5064 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5065 params.sack_delay = sp->sackdelay;
5066 params.sack_freq = sp->sackfreq;
5067 } else {
5068 params.sack_delay = 0;
5069 params.sack_freq = 1;
5070 }
5071 }
5072
5073 if (copy_to_user(optval, &params, len))
5074 return -EFAULT14;
5075
5076 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5076); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5077 return -EFAULT14;
5078
5079 return 0;
5080}
5081
5082/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5083 *
5084 * Applications can specify protocol parameters for the default association
5085 * initialization. The option name argument to setsockopt() and getsockopt()
5086 * is SCTP_INITMSG.
5087 *
5088 * Setting initialization parameters is effective only on an unconnected
5089 * socket (for UDP-style sockets only future associations are effected
5090 * by the change). With TCP-style sockets, this option is inherited by
5091 * sockets derived from a listener socket.
5092 */
5093static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5094{
5095 if (len < sizeof(struct sctp_initmsg))
5096 return -EINVAL22;
5097 len = sizeof(struct sctp_initmsg);
5098 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5098); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5099 return -EFAULT14;
5100 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5101 return -EFAULT14;
5102 return 0;
5103}
5104
5105
5106static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5107 char __user *optval, int __user *optlen)
5108{
5109 struct sctp_association *asoc;
5110 int cnt = 0;
5111 struct sctp_getaddrs getaddrs;
5112 struct sctp_transport *from;
5113 void __user *to;
5114 union sctp_addr temp;
5115 struct sctp_sock *sp = sctp_sk(sk);
5116 int addrlen;
5117 size_t space_left;
5118 int bytes_copied;
5119
5120 if (len < sizeof(struct sctp_getaddrs))
8
Taking false branch
5121 return -EINVAL22;
5122
5123 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
9
Taking false branch
5124 return -EFAULT14;
5125
5126 /* For UDP-style sockets, id specifies the association to query. */
5127 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5128 if (!asoc)
10
Assuming 'asoc' is non-null
11
Taking false branch
5129 return -EINVAL22;
5130
5131 to = optval + offsetof(struct sctp_getaddrs, addrs)__builtin_offsetof(struct sctp_getaddrs, addrs);
5132 space_left = len - offsetof(struct sctp_getaddrs, addrs)__builtin_offsetof(struct sctp_getaddrs, addrs);
5133
5134 list_for_each_entry(from, &asoc->peer.transport_addr_list,for (from = ({ const typeof( ((typeof(*from) *)0)->transports
) *__mptr = ((&asoc->peer.transport_addr_list)->next
); (typeof(*from) *)( (char *)__mptr - __builtin_offsetof(typeof
(*from), transports) );}); &from->transports != (&
asoc->peer.transport_addr_list); from = ({ const typeof( (
(typeof(*(from)) *)0)->transports ) *__mptr = ((from)->
transports.next); (typeof(*(from)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(from)), transports) );}))
5135 transports)for (from = ({ const typeof( ((typeof(*from) *)0)->transports
) *__mptr = ((&asoc->peer.transport_addr_list)->next
); (typeof(*from) *)( (char *)__mptr - __builtin_offsetof(typeof
(*from), transports) );}); &from->transports != (&
asoc->peer.transport_addr_list); from = ({ const typeof( (
(typeof(*(from)) *)0)->transports ) *__mptr = ((from)->
transports.next); (typeof(*(from)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(from)), transports) );}))
{
5136 memcpy(&temp, &from->ipaddr, sizeof(temp))({ size_t __len = (sizeof(temp)); void *__ret; if (__builtin_constant_p
(sizeof(temp)) && __len >= 64) __ret = __memcpy((&
temp), (&from->ipaddr), __len); else __ret = __builtin_memcpy
((&temp), (&from->ipaddr), __len); __ret; })
;
5137 addrlen = sctp_get_pf_specific(sk->sk_family__sk_common.skc_family)
5138 ->addr_to_user(sp, &temp);
5139 if (space_left < addrlen)
12
Taking false branch
5140 return -ENOMEM12;
5141 if (copy_to_user(to, &temp, addrlen))
13
Copies out a struct with a union element with different sizes
5142 return -EFAULT14;
5143 to += addrlen;
5144 cnt++;
5145 space_left -= addrlen;
5146 }
5147
5148 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)({ int __ret_pu; __typeof__(*(&((struct sctp_getaddrs *)optval
)->addr_num)) __pu_val; (void)0; __might_fault("net/sctp/socket.c"
, 5148); __pu_val = cnt; switch (sizeof(*(&((struct sctp_getaddrs
*)optval)->addr_num))) { case 1: asm volatile("call __put_user_"
"1" : "=a" (__ret_pu) : "0" ((typeof(*(&((struct sctp_getaddrs
*)optval)->addr_num)))(__pu_val)), "c" (&((struct sctp_getaddrs
*)optval)->addr_num) : "ebx"); break; case 2: asm volatile
("call __put_user_" "2" : "=a" (__ret_pu) : "0" ((typeof(*(&
((struct sctp_getaddrs *)optval)->addr_num)))(__pu_val)), "c"
(&((struct sctp_getaddrs *)optval)->addr_num) : "ebx"
); break; case 4: asm volatile("call __put_user_" "4" : "=a" (
__ret_pu) : "0" ((typeof(*(&((struct sctp_getaddrs *)optval
)->addr_num)))(__pu_val)), "c" (&((struct sctp_getaddrs
*)optval)->addr_num) : "ebx"); break; case 8: asm volatile
("call __put_user_" "8" : "=a" (__ret_pu) : "0" ((typeof(*(&
((struct sctp_getaddrs *)optval)->addr_num)))(__pu_val)), "c"
(&((struct sctp_getaddrs *)optval)->addr_num) : "ebx"
); break; default: asm volatile("call __put_user_" "X" : "=a"
(__ret_pu) : "0" ((typeof(*(&((struct sctp_getaddrs *)optval
)->addr_num)))(__pu_val)), "c" (&((struct sctp_getaddrs
*)optval)->addr_num) : "ebx"); break; } __builtin_expect(
__ret_pu, 0); })
)
5149 return -EFAULT14;
5150 bytes_copied = ((char __user *)to) - optval;
5151 if (put_user(bytes_copied, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5151); __pu_val = bytes_copied; switch (
sizeof(*(optlen))) { case 1: asm volatile("call __put_user_" "1"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 2: asm volatile("call __put_user_"
"2" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5152 return -EFAULT14;
5153
5154 return 0;
5155}
5156
5157static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5158 size_t space_left, int *bytes_copied)
5159{
5160 struct sctp_sockaddr_entry *addr;
5161 union sctp_addr temp;
5162 int cnt = 0;
5163 int addrlen;
5164 struct net *net = sock_net(sk);
5165
5166 rcu_read_lock();
5167 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list)for (addr = ({ const typeof( ((typeof(*addr) *)0)->list ) *
__mptr = (({ typeof((&net->sctp.local_addr_list)->next
) _________p1 = ({ union { typeof((&net->sctp.local_addr_list
)->next) __val; char __c[1]; } __u; if (1) __read_once_size
(&((&net->sctp.local_addr_list)->next), __u.__c
, sizeof((&net->sctp.local_addr_list)->next)); else
__read_once_size_nocheck(&((&net->sctp.local_addr_list
)->next), __u.__c, sizeof((&net->sctp.local_addr_list
)->next)); __u.__val; }); typeof(*((&net->sctp.local_addr_list
)->next)) *___typecheck_p __attribute__((unused)); do { } while
(0); (_________p1); })); (typeof(*addr) *)( (char *)__mptr -
__builtin_offsetof(typeof(*addr), list) );}); &addr->
list != (&net->sctp.local_addr_list); addr = ({ const typeof
( ((typeof(*addr) *)0)->list ) *__mptr = (({ typeof(addr->
list.next) _________p1 = ({ union { typeof(addr->list.next
) __val; char __c[1]; } __u; if (1) __read_once_size(&(addr
->list.next), __u.__c, sizeof(addr->list.next)); else __read_once_size_nocheck
(&(addr->list.next), __u.__c, sizeof(addr->list.next
)); __u.__val; }); typeof(*(addr->list.next)) *___typecheck_p
__attribute__((unused)); do { } while (0); (_________p1); })
); (typeof(*addr) *)( (char *)__mptr - __builtin_offsetof(typeof
(*addr), list) );}))
{
5168 if (!addr->valid)
5169 continue;
5170
5171 if ((PF_INET2 == sk->sk_family__sk_common.skc_family) &&
5172 (AF_INET610 == addr->a.sa.sa_family))
5173 continue;
5174 if ((PF_INET610 == sk->sk_family__sk_common.skc_family) &&
5175 inet_v6_ipv6only(sk) &&
5176 (AF_INET2 == addr->a.sa.sa_family))
5177 continue;
5178 memcpy(&temp, &addr->a, sizeof(temp))({ size_t __len = (sizeof(temp)); void *__ret; if (__builtin_constant_p
(sizeof(temp)) && __len >= 64) __ret = __memcpy((&
temp), (&addr->a), __len); else __ret = __builtin_memcpy
((&temp), (&addr->a), __len); __ret; })
;
5179 if (!temp.v4.sin_port)
5180 temp.v4.sin_port = htons(port)(( __be16)(__builtin_constant_p((__u16)((port))) ? ((__u16)( (
((__u16)((port)) & (__u16)0x00ffU) << 8) | (((__u16
)((port)) & (__u16)0xff00U) >> 8))) : __fswab16((port
))))
;
5181
5182 addrlen = sctp_get_pf_specific(sk->sk_family__sk_common.skc_family)
5183 ->addr_to_user(sctp_sk(sk), &temp);
5184
5185 if (space_left < addrlen) {
5186 cnt = -ENOMEM12;
5187 break;
5188 }
5189 memcpy(to, &temp, addrlen)({ size_t __len = (addrlen); void *__ret; if (__builtin_constant_p
(addrlen) && __len >= 64) __ret = __memcpy((to), (
&temp), __len); else __ret = __builtin_memcpy((to), (&
temp), __len); __ret; })
;
5190
5191 to += addrlen;
5192 cnt++;
5193 space_left -= addrlen;
5194 *bytes_copied += addrlen;
5195 }
5196 rcu_read_unlock();
5197
5198 return cnt;
5199}
5200
5201
5202static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5203 char __user *optval, int __user *optlen)
5204{
5205 struct sctp_bind_addr *bp;
5206 struct sctp_association *asoc;
5207 int cnt = 0;
5208 struct sctp_getaddrs getaddrs;
5209 struct sctp_sockaddr_entry *addr;
5210 void __user *to;
5211 union sctp_addr temp;
5212 struct sctp_sock *sp = sctp_sk(sk);
5213 int addrlen;
5214 int err = 0;
5215 size_t space_left;
5216 int bytes_copied = 0;
5217 void *addrs;
5218 void *buf;
5219
5220 if (len < sizeof(struct sctp_getaddrs))
5221 return -EINVAL22;
5222
5223 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5224 return -EFAULT14;
5225
5226 /*
5227 * For UDP-style sockets, id specifies the association to query.
5228 * If the id field is set to the value '0' then the locally bound
5229 * addresses are returned without regard to any particular
5230 * association.
5231 */
5232 if (0 == getaddrs.assoc_id) {
5233 bp = &sctp_sk(sk)->ep->base.bind_addr;
5234 } else {
5235 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5236 if (!asoc)
5237 return -EINVAL22;
5238 bp = &asoc->base.bind_addr;
5239 }
5240
5241 to = optval + offsetof(struct sctp_getaddrs, addrs)__builtin_offsetof(struct sctp_getaddrs, addrs);
5242 space_left = len - offsetof(struct sctp_getaddrs, addrs)__builtin_offsetof(struct sctp_getaddrs, addrs);
5243
5244 addrs = kmalloc(space_left, GFP_USER((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u) | (( gfp_t)0x20000u))
| __GFP_NOWARN(( gfp_t)0x200u));
5245 if (!addrs)
5246 return -ENOMEM12;
5247
5248 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5249 * addresses from the global local address list.
5250 */
5251 if (sctp_list_single_entry(&bp->address_list)) {
5252 addr = list_entry(bp->address_list.next,({ const typeof( ((struct sctp_sockaddr_entry *)0)->list )
*__mptr = (bp->address_list.next); (struct sctp_sockaddr_entry
*)( (char *)__mptr - __builtin_offsetof(struct sctp_sockaddr_entry
, list) );})
5253 struct sctp_sockaddr_entry, list)({ const typeof( ((struct sctp_sockaddr_entry *)0)->list )
*__mptr = (bp->address_list.next); (struct sctp_sockaddr_entry
*)( (char *)__mptr - __builtin_offsetof(struct sctp_sockaddr_entry
, list) );})
;
5254 if (sctp_is_any(sk, &addr->a)) {
5255 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5256 space_left, &bytes_copied);
5257 if (cnt < 0) {
5258 err = cnt;
5259 goto out;
5260 }
5261 goto copy_getaddrs;
5262 }
5263 }
5264
5265 buf = addrs;
5266 /* Protection on the bound address list is not needed since
5267 * in the socket option context we hold a socket lock and
5268 * thus the bound address list can't change.
5269 */
5270 list_for_each_entry(addr, &bp->address_list, list)for (addr = ({ const typeof( ((typeof(*addr) *)0)->list ) *
__mptr = ((&bp->address_list)->next); (typeof(*addr
) *)( (char *)__mptr - __builtin_offsetof(typeof(*addr), list
) );}); &addr->list != (&bp->address_list); addr
= ({ const typeof( ((typeof(*(addr)) *)0)->list ) *__mptr
= ((addr)->list.next); (typeof(*(addr)) *)( (char *)__mptr
- __builtin_offsetof(typeof(*(addr)), list) );}))
{
5271 memcpy(&temp, &addr->a, sizeof(temp))({ size_t __len = (sizeof(temp)); void *__ret; if (__builtin_constant_p
(sizeof(temp)) && __len >= 64) __ret = __memcpy((&
temp), (&addr->a), __len); else __ret = __builtin_memcpy
((&temp), (&addr->a), __len); __ret; })
;
5272 addrlen = sctp_get_pf_specific(sk->sk_family__sk_common.skc_family)
5273 ->addr_to_user(sp, &temp);
5274 if (space_left < addrlen) {
5275 err = -ENOMEM12; /*fixme: right error?*/
5276 goto out;
5277 }
5278 memcpy(buf, &temp, addrlen)({ size_t __len = (addrlen); void *__ret; if (__builtin_constant_p
(addrlen) && __len >= 64) __ret = __memcpy((buf), (
&temp), __len); else __ret = __builtin_memcpy((buf), (&
temp), __len); __ret; })
;
5279 buf += addrlen;
5280 bytes_copied += addrlen;
5281 cnt++;
5282 space_left -= addrlen;
5283 }
5284
5285copy_getaddrs:
5286 if (copy_to_user(to, addrs, bytes_copied)) {
5287 err = -EFAULT14;
5288 goto out;
5289 }
5290 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)({ int __ret_pu; __typeof__(*(&((struct sctp_getaddrs *)optval
)->addr_num)) __pu_val; (void)0; __might_fault("net/sctp/socket.c"
, 5290); __pu_val = cnt; switch (sizeof(*(&((struct sctp_getaddrs
*)optval)->addr_num))) { case 1: asm volatile("call __put_user_"
"1" : "=a" (__ret_pu) : "0" ((typeof(*(&((struct sctp_getaddrs
*)optval)->addr_num)))(__pu_val)), "c" (&((struct sctp_getaddrs
*)optval)->addr_num) : "ebx"); break; case 2: asm volatile
("call __put_user_" "2" : "=a" (__ret_pu) : "0" ((typeof(*(&
((struct sctp_getaddrs *)optval)->addr_num)))(__pu_val)), "c"
(&((struct sctp_getaddrs *)optval)->addr_num) : "ebx"
); break; case 4: asm volatile("call __put_user_" "4" : "=a" (
__ret_pu) : "0" ((typeof(*(&((struct sctp_getaddrs *)optval
)->addr_num)))(__pu_val)), "c" (&((struct sctp_getaddrs
*)optval)->addr_num) : "ebx"); break; case 8: asm volatile
("call __put_user_" "8" : "=a" (__ret_pu) : "0" ((typeof(*(&
((struct sctp_getaddrs *)optval)->addr_num)))(__pu_val)), "c"
(&((struct sctp_getaddrs *)optval)->addr_num) : "ebx"
); break; default: asm volatile("call __put_user_" "X" : "=a"
(__ret_pu) : "0" ((typeof(*(&((struct sctp_getaddrs *)optval
)->addr_num)))(__pu_val)), "c" (&((struct sctp_getaddrs
*)optval)->addr_num) : "ebx"); break; } __builtin_expect(
__ret_pu, 0); })
) {
5291 err = -EFAULT14;
5292 goto out;
5293 }
5294 if (put_user(bytes_copied, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5294); __pu_val = bytes_copied; switch (
sizeof(*(optlen))) { case 1: asm volatile("call __put_user_" "1"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 2: asm volatile("call __put_user_"
"2" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5295 err = -EFAULT14;
5296out:
5297 kfree(addrs);
5298 return err;
5299}
5300
5301/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5302 *
5303 * Requests that the local SCTP stack use the enclosed peer address as
5304 * the association primary. The enclosed address must be one of the
5305 * association peer's addresses.
5306 */
5307static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5308 char __user *optval, int __user *optlen)
5309{
5310 struct sctp_prim prim;
5311 struct sctp_association *asoc;
5312 struct sctp_sock *sp = sctp_sk(sk);
5313
5314 if (len < sizeof(struct sctp_prim))
5315 return -EINVAL22;
5316
5317 len = sizeof(struct sctp_prim);
5318
5319 if (copy_from_user(&prim, optval, len))
5320 return -EFAULT14;
5321
5322 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5323 if (!asoc)
5324 return -EINVAL22;
5325
5326 if (!asoc->peer.primary_path)
5327 return -ENOTCONN107;
5328
5329 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,({ size_t __len = (asoc->peer.primary_path->af_specific
->sockaddr_len); void *__ret; if (__builtin_constant_p(asoc
->peer.primary_path->af_specific->sockaddr_len) &&
__len >= 64) __ret = __memcpy((&prim.ssp_addr), (&
asoc->peer.primary_path->ipaddr), __len); else __ret = __builtin_memcpy
((&prim.ssp_addr), (&asoc->peer.primary_path->ipaddr
), __len); __ret; })
5330 asoc->peer.primary_path->af_specific->sockaddr_len)({ size_t __len = (asoc->peer.primary_path->af_specific
->sockaddr_len); void *__ret; if (__builtin_constant_p(asoc
->peer.primary_path->af_specific->sockaddr_len) &&
__len >= 64) __ret = __memcpy((&prim.ssp_addr), (&
asoc->peer.primary_path->ipaddr), __len); else __ret = __builtin_memcpy
((&prim.ssp_addr), (&asoc->peer.primary_path->ipaddr
), __len); __ret; })
;
5331
5332 sctp_get_pf_specific(sk->sk_family__sk_common.skc_family)->addr_to_user(sp,
5333 (union sctp_addr *)&prim.ssp_addr);
5334
5335 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5335); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5336 return -EFAULT14;
5337 if (copy_to_user(optval, &prim, len))
5338 return -EFAULT14;
5339
5340 return 0;
5341}
5342
5343/*
5344 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5345 *
5346 * Requests that the local endpoint set the specified Adaptation Layer
5347 * Indication parameter for all future INIT and INIT-ACK exchanges.
5348 */
5349static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5350 char __user *optval, int __user *optlen)
5351{
5352 struct sctp_setadaptation adaptation;
5353
5354 if (len < sizeof(struct sctp_setadaptation))
5355 return -EINVAL22;
5356
5357 len = sizeof(struct sctp_setadaptation);
5358
5359 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5360
5361 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5361); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5362 return -EFAULT14;
5363 if (copy_to_user(optval, &adaptation, len))
5364 return -EFAULT14;
5365
5366 return 0;
5367}
5368
5369/*
5370 *
5371 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5372 *
5373 * Applications that wish to use the sendto() system call may wish to
5374 * specify a default set of parameters that would normally be supplied
5375 * through the inclusion of ancillary data. This socket option allows
5376 * such an application to set the default sctp_sndrcvinfo structure.
5377
5378
5379 * The application that wishes to use this socket option simply passes
5380 * in to this call the sctp_sndrcvinfo structure defined in Section
5381 * 5.2.2) The input parameters accepted by this call include
5382 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5383 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5384 * to this call if the caller is using the UDP model.
5385 *
5386 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5387 */
5388static int sctp_getsockopt_default_send_param(struct sock *sk,
5389 int len, char __user *optval,
5390 int __user *optlen)
5391{
5392 struct sctp_sock *sp = sctp_sk(sk);
5393 struct sctp_association *asoc;
5394 struct sctp_sndrcvinfo info;
5395
5396 if (len < sizeof(info))
5397 return -EINVAL22;
5398
5399 len = sizeof(info);
5400
5401 if (copy_from_user(&info, optval, len))
5402 return -EFAULT14;
5403
5404 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5405 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
5406 return -EINVAL22;
5407 if (asoc) {
5408 info.sinfo_stream = asoc->default_stream;
5409 info.sinfo_flags = asoc->default_flags;
5410 info.sinfo_ppid = asoc->default_ppid;
5411 info.sinfo_context = asoc->default_context;
5412 info.sinfo_timetolive = asoc->default_timetolive;
5413 } else {
5414 info.sinfo_stream = sp->default_stream;
5415 info.sinfo_flags = sp->default_flags;
5416 info.sinfo_ppid = sp->default_ppid;
5417 info.sinfo_context = sp->default_context;
5418 info.sinfo_timetolive = sp->default_timetolive;
5419 }
5420
5421 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5421); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5422 return -EFAULT14;
5423 if (copy_to_user(optval, &info, len))
5424 return -EFAULT14;
5425
5426 return 0;
5427}
5428
5429/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5430 * (SCTP_DEFAULT_SNDINFO)
5431 */
5432static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5433 char __user *optval,
5434 int __user *optlen)
5435{
5436 struct sctp_sock *sp = sctp_sk(sk);
5437 struct sctp_association *asoc;
5438 struct sctp_sndinfo info;
5439
5440 if (len < sizeof(info))
5441 return -EINVAL22;
5442
5443 len = sizeof(info);
5444
5445 if (copy_from_user(&info, optval, len))
5446 return -EFAULT14;
5447
5448 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5449 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
5450 return -EINVAL22;
5451 if (asoc) {
5452 info.snd_sid = asoc->default_stream;
5453 info.snd_flags = asoc->default_flags;
5454 info.snd_ppid = asoc->default_ppid;
5455 info.snd_context = asoc->default_context;
5456 } else {
5457 info.snd_sid = sp->default_stream;
5458 info.snd_flags = sp->default_flags;
5459 info.snd_ppid = sp->default_ppid;
5460 info.snd_context = sp->default_context;
5461 }
5462
5463 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5463); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5464 return -EFAULT14;
5465 if (copy_to_user(optval, &info, len))
5466 return -EFAULT14;
5467
5468 return 0;
5469}
5470
5471/*
5472 *
5473 * 7.1.5 SCTP_NODELAY
5474 *
5475 * Turn on/off any Nagle-like algorithm. This means that packets are
5476 * generally sent as soon as possible and no unnecessary delays are
5477 * introduced, at the cost of more packets in the network. Expects an
5478 * integer boolean flag.
5479 */
5480
5481static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5482 char __user *optval, int __user *optlen)
5483{
5484 int val;
5485
5486 if (len < sizeof(int))
5487 return -EINVAL22;
5488
5489 len = sizeof(int);
5490 val = (sctp_sk(sk)->nodelay == 1);
5491 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5491); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5492 return -EFAULT14;
5493 if (copy_to_user(optval, &val, len))
5494 return -EFAULT14;
5495 return 0;
5496}
5497
5498/*
5499 *
5500 * 7.1.1 SCTP_RTOINFO
5501 *
5502 * The protocol parameters used to initialize and bound retransmission
5503 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5504 * and modify these parameters.
5505 * All parameters are time values, in milliseconds. A value of 0, when
5506 * modifying the parameters, indicates that the current value should not
5507 * be changed.
5508 *
5509 */
5510static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5511 char __user *optval,
5512 int __user *optlen) {
5513 struct sctp_rtoinfo rtoinfo;
5514 struct sctp_association *asoc;
5515
5516 if (len < sizeof (struct sctp_rtoinfo))
5517 return -EINVAL22;
5518
5519 len = sizeof(struct sctp_rtoinfo);
5520
5521 if (copy_from_user(&rtoinfo, optval, len))
5522 return -EFAULT14;
5523
5524 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5525
5526 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
5527 return -EINVAL22;
5528
5529 /* Values corresponding to the specific association. */
5530 if (asoc) {
5531 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5532 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5533 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5534 } else {
5535 /* Values corresponding to the endpoint. */
5536 struct sctp_sock *sp = sctp_sk(sk);
5537
5538 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5539 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5540 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5541 }
5542
5543 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5543); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5544 return -EFAULT14;
5545
5546 if (copy_to_user(optval, &rtoinfo, len))
5547 return -EFAULT14;
5548
5549 return 0;
5550}
5551
5552/*
5553 *
5554 * 7.1.2 SCTP_ASSOCINFO
5555 *
5556 * This option is used to tune the maximum retransmission attempts
5557 * of the association.
5558 * Returns an error if the new association retransmission value is
5559 * greater than the sum of the retransmission value of the peer.
5560 * See [SCTP] for more information.
5561 *
5562 */
5563static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5564 char __user *optval,
5565 int __user *optlen)
5566{
5567
5568 struct sctp_assocparams assocparams;
5569 struct sctp_association *asoc;
5570 struct list_head *pos;
5571 int cnt = 0;
5572
5573 if (len < sizeof (struct sctp_assocparams))
5574 return -EINVAL22;
5575
5576 len = sizeof(struct sctp_assocparams);
5577
5578 if (copy_from_user(&assocparams, optval, len))
5579 return -EFAULT14;
5580
5581 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5582
5583 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
5584 return -EINVAL22;
5585
5586 /* Values correspoinding to the specific association */
5587 if (asoc) {
5588 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5589 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5590 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5591 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5592
5593 list_for_each(pos, &asoc->peer.transport_addr_list)for (pos = (&asoc->peer.transport_addr_list)->next;
pos != (&asoc->peer.transport_addr_list); pos = pos->
next)
{
5594 cnt++;
5595 }
5596
5597 assocparams.sasoc_number_peer_destinations = cnt;
5598 } else {
5599 /* Values corresponding to the endpoint */
5600 struct sctp_sock *sp = sctp_sk(sk);
5601
5602 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5603 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5604 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5605 assocparams.sasoc_cookie_life =
5606 sp->assocparams.sasoc_cookie_life;
5607 assocparams.sasoc_number_peer_destinations =
5608 sp->assocparams.
5609 sasoc_number_peer_destinations;
5610 }
5611
5612 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5612); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5613 return -EFAULT14;
5614
5615 if (copy_to_user(optval, &assocparams, len))
5616 return -EFAULT14;
5617
5618 return 0;
5619}
5620
5621/*
5622 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5623 *
5624 * This socket option is a boolean flag which turns on or off mapped V4
5625 * addresses. If this option is turned on and the socket is type
5626 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5627 * If this option is turned off, then no mapping will be done of V4
5628 * addresses and a user will receive both PF_INET6 and PF_INET type
5629 * addresses on the socket.
5630 */
5631static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5632 char __user *optval, int __user *optlen)
5633{
5634 int val;
5635 struct sctp_sock *sp = sctp_sk(sk);
5636
5637 if (len < sizeof(int))
5638 return -EINVAL22;
5639
5640 len = sizeof(int);
5641 val = sp->v4mapped;
5642 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5642); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5643 return -EFAULT14;
5644 if (copy_to_user(optval, &val, len))
5645 return -EFAULT14;
5646
5647 return 0;
5648}
5649
5650/*
5651 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5652 * (chapter and verse is quoted at sctp_setsockopt_context())
5653 */
5654static int sctp_getsockopt_context(struct sock *sk, int len,
5655 char __user *optval, int __user *optlen)
5656{
5657 struct sctp_assoc_value params;
5658 struct sctp_sock *sp;
5659 struct sctp_association *asoc;
5660
5661 if (len < sizeof(struct sctp_assoc_value))
5662 return -EINVAL22;
5663
5664 len = sizeof(struct sctp_assoc_value);
5665
5666 if (copy_from_user(&params, optval, len))
5667 return -EFAULT14;
5668
5669 sp = sctp_sk(sk);
5670
5671 if (params.assoc_id != 0) {
5672 asoc = sctp_id2assoc(sk, params.assoc_id);
5673 if (!asoc)
5674 return -EINVAL22;
5675 params.assoc_value = asoc->default_rcv_context;
5676 } else {
5677 params.assoc_value = sp->default_rcv_context;
5678 }
5679
5680 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5680); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5681 return -EFAULT14;
5682 if (copy_to_user(optval, &params, len))
5683 return -EFAULT14;
5684
5685 return 0;
5686}
5687
5688/*
5689 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5690 * This option will get or set the maximum size to put in any outgoing
5691 * SCTP DATA chunk. If a message is larger than this size it will be
5692 * fragmented by SCTP into the specified size. Note that the underlying
5693 * SCTP implementation may fragment into smaller sized chunks when the
5694 * PMTU of the underlying association is smaller than the value set by
5695 * the user. The default value for this option is '0' which indicates
5696 * the user is NOT limiting fragmentation and only the PMTU will effect
5697 * SCTP's choice of DATA chunk size. Note also that values set larger
5698 * than the maximum size of an IP datagram will effectively let SCTP
5699 * control fragmentation (i.e. the same as setting this option to 0).
5700 *
5701 * The following structure is used to access and modify this parameter:
5702 *
5703 * struct sctp_assoc_value {
5704 * sctp_assoc_t assoc_id;
5705 * uint32_t assoc_value;
5706 * };
5707 *
5708 * assoc_id: This parameter is ignored for one-to-one style sockets.
5709 * For one-to-many style sockets this parameter indicates which
5710 * association the user is performing an action upon. Note that if
5711 * this field's value is zero then the endpoints default value is
5712 * changed (effecting future associations only).
5713 * assoc_value: This parameter specifies the maximum size in bytes.
5714 */
5715static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5716 char __user *optval, int __user *optlen)
5717{
5718 struct sctp_assoc_value params;
5719 struct sctp_association *asoc;
5720
5721 if (len == sizeof(int)) {
5722 pr_warn_ratelimited(DEPRECATED({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
5723 "%s (pid %d) "({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
5724 "Use of int in maxseg socket option.\n"({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
5725 "Use struct sctp_assoc_value instead\n",({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
5726 current->comm, task_pid_nr(current))({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in maxseg socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
;
5727 params.assoc_id = 0;
5728 } else if (len >= sizeof(struct sctp_assoc_value)) {
5729 len = sizeof(struct sctp_assoc_value);
5730 if (copy_from_user(&params, optval, sizeof(params)))
5731 return -EFAULT14;
5732 } else
5733 return -EINVAL22;
5734
5735 asoc = sctp_id2assoc(sk, params.assoc_id);
5736 if (!asoc && params.assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
5737 return -EINVAL22;
5738
5739 if (asoc)
5740 params.assoc_value = asoc->frag_point;
5741 else
5742 params.assoc_value = sctp_sk(sk)->user_frag;
5743
5744 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5744); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5745 return -EFAULT14;
5746 if (len == sizeof(int)) {
5747 if (copy_to_user(optval, &params.assoc_value, len))
5748 return -EFAULT14;
5749 } else {
5750 if (copy_to_user(optval, &params, len))
5751 return -EFAULT14;
5752 }
5753
5754 return 0;
5755}
5756
5757/*
5758 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5759 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5760 */
5761static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5762 char __user *optval, int __user *optlen)
5763{
5764 int val;
5765
5766 if (len < sizeof(int))
5767 return -EINVAL22;
5768
5769 len = sizeof(int);
5770
5771 val = sctp_sk(sk)->frag_interleave;
5772 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5772); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5773 return -EFAULT14;
5774 if (copy_to_user(optval, &val, len))
5775 return -EFAULT14;
5776
5777 return 0;
5778}
5779
5780/*
5781 * 7.1.25. Set or Get the sctp partial delivery point
5782 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5783 */
5784static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5785 char __user *optval,
5786 int __user *optlen)
5787{
5788 u32 val;
5789
5790 if (len < sizeof(u32))
5791 return -EINVAL22;
5792
5793 len = sizeof(u32);
5794
5795 val = sctp_sk(sk)->pd_point;
5796 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5796); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5797 return -EFAULT14;
5798 if (copy_to_user(optval, &val, len))
5799 return -EFAULT14;
5800
5801 return 0;
5802}
5803
5804/*
5805 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5806 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5807 */
5808static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5809 char __user *optval,
5810 int __user *optlen)
5811{
5812 struct sctp_assoc_value params;
5813 struct sctp_sock *sp;
5814 struct sctp_association *asoc;
5815
5816 if (len == sizeof(int)) {
5817 pr_warn_ratelimited(DEPRECATED({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in max_burst socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
5818 "%s (pid %d) "({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in max_burst socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
5819 "Use of int in max_burst socket option.\n"({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in max_burst socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
5820 "Use struct sctp_assoc_value instead\n",({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in max_burst socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
5821 current->comm, task_pid_nr(current))({ static struct ratelimit_state _rs = { .lock = (raw_spinlock_t
) { .raw_lock = { { (0) } }, .magic = 0xdead4ead, .owner_cpu =
-1, .owner = ((void *)-1L), .dep_map = { .name = "_rs.lock" }
}, .interval = (5 * 250), .burst = 10, }; if (___ratelimit(&
_rs, __func__)) printk("\001" "4" "sctp" ": " "[Deprecated]: "
"%s (pid %d) " "Use of int in max_burst socket option.\n" "Use struct sctp_assoc_value instead\n"
, get_current()->comm, task_pid_nr(get_current())); })
;
5822 params.assoc_id = 0;
5823 } else if (len >= sizeof(struct sctp_assoc_value)) {
5824 len = sizeof(struct sctp_assoc_value);
5825 if (copy_from_user(&params, optval, len))
5826 return -EFAULT14;
5827 } else
5828 return -EINVAL22;
5829
5830 sp = sctp_sk(sk);
5831
5832 if (params.assoc_id != 0) {
5833 asoc = sctp_id2assoc(sk, params.assoc_id);
5834 if (!asoc)
5835 return -EINVAL22;
5836 params.assoc_value = asoc->max_burst;
5837 } else
5838 params.assoc_value = sp->max_burst;
5839
5840 if (len == sizeof(int)) {
5841 if (copy_to_user(optval, &params.assoc_value, len))
5842 return -EFAULT14;
5843 } else {
5844 if (copy_to_user(optval, &params, len))
5845 return -EFAULT14;
5846 }
5847
5848 return 0;
5849
5850}
5851
5852static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5853 char __user *optval, int __user *optlen)
5854{
5855 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5856 struct sctp_hmacalgo __user *p = (void __user *)optval;
5857 struct sctp_hmac_algo_param *hmacs;
5858 __u16 data_len = 0;
5859 u32 num_idents;
5860 int i;
5861
5862 if (!ep->auth_enable)
5863 return -EACCES13;
5864
5865 hmacs = ep->auth_hmacs_list;
5866 data_len = ntohs(hmacs->param_hdr.length)(__builtin_constant_p((__u16)(( __u16)(__be16)(hmacs->param_hdr
.length))) ? ((__u16)( (((__u16)(( __u16)(__be16)(hmacs->param_hdr
.length)) & (__u16)0x00ffU) << 8) | (((__u16)(( __u16
)(__be16)(hmacs->param_hdr.length)) & (__u16)0xff00U) >>
8))) : __fswab16(( __u16)(__be16)(hmacs->param_hdr.length
)))
- sizeof(sctp_paramhdr_t);
5867
5868 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5869 return -EINVAL22;
5870
5871 len = sizeof(struct sctp_hmacalgo) + data_len;
5872 num_idents = data_len / sizeof(u16);
5873
5874 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5874); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5875 return -EFAULT14;
5876 if (put_user(num_idents, &p->shmac_num_idents)({ int __ret_pu; __typeof__(*(&p->shmac_num_idents)) __pu_val
; (void)0; __might_fault("net/sctp/socket.c", 5876); __pu_val
= num_idents; switch (sizeof(*(&p->shmac_num_idents))
) { case 1: asm volatile("call __put_user_" "1" : "=a" (__ret_pu
) : "0" ((typeof(*(&p->shmac_num_idents)))(__pu_val)),
"c" (&p->shmac_num_idents) : "ebx"); break; case 2: asm
volatile("call __put_user_" "2" : "=a" (__ret_pu) : "0" ((typeof
(*(&p->shmac_num_idents)))(__pu_val)), "c" (&p->
shmac_num_idents) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(&p->shmac_num_idents
)))(__pu_val)), "c" (&p->shmac_num_idents) : "ebx"); break
; case 8: asm volatile("call __put_user_" "8" : "=a" (__ret_pu
) : "0" ((typeof(*(&p->shmac_num_idents)))(__pu_val)),
"c" (&p->shmac_num_idents) : "ebx"); break; default: asm
volatile("call __put_user_" "X" : "=a" (__ret_pu) : "0" ((typeof
(*(&p->shmac_num_idents)))(__pu_val)), "c" (&p->
shmac_num_idents) : "ebx"); break; } __builtin_expect(__ret_pu
, 0); })
)
5877 return -EFAULT14;
5878 for (i = 0; i < num_idents; i++) {
5879 __u16 hmacid = ntohs(hmacs->hmac_ids[i])(__builtin_constant_p((__u16)(( __u16)(__be16)(hmacs->hmac_ids
[i]))) ? ((__u16)( (((__u16)(( __u16)(__be16)(hmacs->hmac_ids
[i])) & (__u16)0x00ffU) << 8) | (((__u16)(( __u16)(
__be16)(hmacs->hmac_ids[i])) & (__u16)0xff00U) >>
8))) : __fswab16(( __u16)(__be16)(hmacs->hmac_ids[i])))
;
5880
5881 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5882 return -EFAULT14;
5883 }
5884 return 0;
5885}
5886
5887static int sctp_getsockopt_active_key(struct sock *sk, int len,
5888 char __user *optval, int __user *optlen)
5889{
5890 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5891 struct sctp_authkeyid val;
5892 struct sctp_association *asoc;
5893
5894 if (!ep->auth_enable)
5895 return -EACCES13;
5896
5897 if (len < sizeof(struct sctp_authkeyid))
5898 return -EINVAL22;
5899 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5900 return -EFAULT14;
5901
5902 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5903 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
5904 return -EINVAL22;
5905
5906 if (asoc)
5907 val.scact_keynumber = asoc->active_key_id;
5908 else
5909 val.scact_keynumber = ep->active_key_id;
5910
5911 len = sizeof(struct sctp_authkeyid);
5912 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5912); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5913 return -EFAULT14;
5914 if (copy_to_user(optval, &val, len))
5915 return -EFAULT14;
5916
5917 return 0;
5918}
5919
5920static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5921 char __user *optval, int __user *optlen)
5922{
5923 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5924 struct sctp_authchunks __user *p = (void __user *)optval;
5925 struct sctp_authchunks val;
5926 struct sctp_association *asoc;
5927 struct sctp_chunks_param *ch;
5928 u32 num_chunks = 0;
5929 char __user *to;
5930
5931 if (!ep->auth_enable)
5932 return -EACCES13;
5933
5934 if (len < sizeof(struct sctp_authchunks))
5935 return -EINVAL22;
5936
5937 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5938 return -EFAULT14;
5939
5940 to = p->gauth_chunks;
5941 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5942 if (!asoc)
5943 return -EINVAL22;
5944
5945 ch = asoc->peer.peer_chunks;
5946 if (!ch)
5947 goto num;
5948
5949 /* See if the user provided enough room for all the data */
5950 num_chunks = ntohs(ch->param_hdr.length)(__builtin_constant_p((__u16)(( __u16)(__be16)(ch->param_hdr
.length))) ? ((__u16)( (((__u16)(( __u16)(__be16)(ch->param_hdr
.length)) & (__u16)0x00ffU) << 8) | (((__u16)(( __u16
)(__be16)(ch->param_hdr.length)) & (__u16)0xff00U) >>
8))) : __fswab16(( __u16)(__be16)(ch->param_hdr.length)))
- sizeof(sctp_paramhdr_t);
5951 if (len < num_chunks)
5952 return -EINVAL22;
5953
5954 if (copy_to_user(to, ch->chunks, num_chunks))
5955 return -EFAULT14;
5956num:
5957 len = sizeof(struct sctp_authchunks) + num_chunks;
5958 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 5958); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
5959 return -EFAULT14;
5960 if (put_user(num_chunks, &p->gauth_number_of_chunks)({ int __ret_pu; __typeof__(*(&p->gauth_number_of_chunks
)) __pu_val; (void)0; __might_fault("net/sctp/socket.c", 5960
); __pu_val = num_chunks; switch (sizeof(*(&p->gauth_number_of_chunks
))) { case 1: asm volatile("call __put_user_" "1" : "=a" (__ret_pu
) : "0" ((typeof(*(&p->gauth_number_of_chunks)))(__pu_val
)), "c" (&p->gauth_number_of_chunks) : "ebx"); break; case
2: asm volatile("call __put_user_" "2" : "=a" (__ret_pu) : "0"
((typeof(*(&p->gauth_number_of_chunks)))(__pu_val)), "c"
(&p->gauth_number_of_chunks) : "ebx"); break; case 4:
asm volatile("call __put_user_" "4" : "=a" (__ret_pu) : "0" (
(typeof(*(&p->gauth_number_of_chunks)))(__pu_val)), "c"
(&p->gauth_number_of_chunks) : "ebx"); break; case 8:
asm volatile("call __put_user_" "8" : "=a" (__ret_pu) : "0" (
(typeof(*(&p->gauth_number_of_chunks)))(__pu_val)), "c"
(&p->gauth_number_of_chunks) : "ebx"); break; default
: asm volatile("call __put_user_" "X" : "=a" (__ret_pu) : "0"
((typeof(*(&p->gauth_number_of_chunks)))(__pu_val)), "c"
(&p->gauth_number_of_chunks) : "ebx"); break; } __builtin_expect
(__ret_pu, 0); })
)
5961 return -EFAULT14;
5962 return 0;
5963}
5964
5965static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5966 char __user *optval, int __user *optlen)
5967{
5968 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5969 struct sctp_authchunks __user *p = (void __user *)optval;
5970 struct sctp_authchunks val;
5971 struct sctp_association *asoc;
5972 struct sctp_chunks_param *ch;
5973 u32 num_chunks = 0;
5974 char __user *to;
5975
5976 if (!ep->auth_enable)
5977 return -EACCES13;
5978
5979 if (len < sizeof(struct sctp_authchunks))
5980 return -EINVAL22;
5981
5982 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5983 return -EFAULT14;
5984
5985 to = p->gauth_chunks;
5986 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5987 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)))
5988 return -EINVAL22;
5989
5990 if (asoc)
5991 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5992 else
5993 ch = ep->auth_chunk_list;
5994
5995 if (!ch)
5996 goto num;
5997
5998 num_chunks = ntohs(ch->param_hdr.length)(__builtin_constant_p((__u16)(( __u16)(__be16)(ch->param_hdr
.length))) ? ((__u16)( (((__u16)(( __u16)(__be16)(ch->param_hdr
.length)) & (__u16)0x00ffU) << 8) | (((__u16)(( __u16
)(__be16)(ch->param_hdr.length)) & (__u16)0xff00U) >>
8))) : __fswab16(( __u16)(__be16)(ch->param_hdr.length)))
- sizeof(sctp_paramhdr_t);
5999 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6000 return -EINVAL22;
6001
6002 if (copy_to_user(to, ch->chunks, num_chunks))
6003 return -EFAULT14;
6004num:
6005 len = sizeof(struct sctp_authchunks) + num_chunks;
6006 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 6006); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
6007 return -EFAULT14;
6008 if (put_user(num_chunks, &p->gauth_number_of_chunks)({ int __ret_pu; __typeof__(*(&p->gauth_number_of_chunks
)) __pu_val; (void)0; __might_fault("net/sctp/socket.c", 6008
); __pu_val = num_chunks; switch (sizeof(*(&p->gauth_number_of_chunks
))) { case 1: asm volatile("call __put_user_" "1" : "=a" (__ret_pu
) : "0" ((typeof(*(&p->gauth_number_of_chunks)))(__pu_val
)), "c" (&p->gauth_number_of_chunks) : "ebx"); break; case
2: asm volatile("call __put_user_" "2" : "=a" (__ret_pu) : "0"
((typeof(*(&p->gauth_number_of_chunks)))(__pu_val)), "c"
(&p->gauth_number_of_chunks) : "ebx"); break; case 4:
asm volatile("call __put_user_" "4" : "=a" (__ret_pu) : "0" (
(typeof(*(&p->gauth_number_of_chunks)))(__pu_val)), "c"
(&p->gauth_number_of_chunks) : "ebx"); break; case 8:
asm volatile("call __put_user_" "8" : "=a" (__ret_pu) : "0" (
(typeof(*(&p->gauth_number_of_chunks)))(__pu_val)), "c"
(&p->gauth_number_of_chunks) : "ebx"); break; default
: asm volatile("call __put_user_" "X" : "=a" (__ret_pu) : "0"
((typeof(*(&p->gauth_number_of_chunks)))(__pu_val)), "c"
(&p->gauth_number_of_chunks) : "ebx"); break; } __builtin_expect
(__ret_pu, 0); })
)
6009 return -EFAULT14;
6010
6011 return 0;
6012}
6013
6014/*
6015 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6016 * This option gets the current number of associations that are attached
6017 * to a one-to-many style socket. The option value is an uint32_t.
6018 */
6019static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6020 char __user *optval, int __user *optlen)
6021{
6022 struct sctp_sock *sp = sctp_sk(sk);
6023 struct sctp_association *asoc;
6024 u32 val = 0;
6025
6026 if (sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)))
6027 return -EOPNOTSUPP95;
6028
6029 if (len < sizeof(u32))
6030 return -EINVAL22;
6031
6032 len = sizeof(u32);
6033
6034 list_for_each_entry(asoc, &(sp->ep->asocs), asocs)for (asoc = ({ const typeof( ((typeof(*asoc) *)0)->asocs )
*__mptr = ((&(sp->ep->asocs))->next); (typeof(*
asoc) *)( (char *)__mptr - __builtin_offsetof(typeof(*asoc), asocs
) );}); &asoc->asocs != (&(sp->ep->asocs)); asoc
= ({ const typeof( ((typeof(*(asoc)) *)0)->asocs ) *__mptr
= ((asoc)->asocs.next); (typeof(*(asoc)) *)( (char *)__mptr
- __builtin_offsetof(typeof(*(asoc)), asocs) );}))
{
6035 val++;
6036 }
6037
6038 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 6038); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
6039 return -EFAULT14;
6040 if (copy_to_user(optval, &val, len))
6041 return -EFAULT14;
6042
6043 return 0;
6044}
6045
6046/*
6047 * 8.1.23 SCTP_AUTO_ASCONF
6048 * See the corresponding setsockopt entry as description
6049 */
6050static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6051 char __user *optval, int __user *optlen)
6052{
6053 int val = 0;
6054
6055 if (len < sizeof(int))
6056 return -EINVAL22;
6057
6058 len = sizeof(int);
6059 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6060 val = 1;
6061 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 6061); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
6062 return -EFAULT14;
6063 if (copy_to_user(optval, &val, len))
6064 return -EFAULT14;
6065 return 0;
6066}
6067
6068/*
6069 * 8.2.6. Get the Current Identifiers of Associations
6070 * (SCTP_GET_ASSOC_ID_LIST)
6071 *
6072 * This option gets the current list of SCTP association identifiers of
6073 * the SCTP associations handled by a one-to-many style socket.
6074 */
6075static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6076 char __user *optval, int __user *optlen)
6077{
6078 struct sctp_sock *sp = sctp_sk(sk);
6079 struct sctp_association *asoc;
6080 struct sctp_assoc_ids *ids;
6081 u32 num = 0;
6082
6083 if (sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)))
6084 return -EOPNOTSUPP95;
6085
6086 if (len < sizeof(struct sctp_assoc_ids))
6087 return -EINVAL22;
6088
6089 list_for_each_entry(asoc, &(sp->ep->asocs), asocs)for (asoc = ({ const typeof( ((typeof(*asoc) *)0)->asocs )
*__mptr = ((&(sp->ep->asocs))->next); (typeof(*
asoc) *)( (char *)__mptr - __builtin_offsetof(typeof(*asoc), asocs
) );}); &asoc->asocs != (&(sp->ep->asocs)); asoc
= ({ const typeof( ((typeof(*(asoc)) *)0)->asocs ) *__mptr
= ((asoc)->asocs.next); (typeof(*(asoc)) *)( (char *)__mptr
- __builtin_offsetof(typeof(*(asoc)), asocs) );}))
{
6090 num++;
6091 }
6092
6093 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6094 return -EINVAL22;
6095
6096 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6097
6098 ids = kmalloc(len, GFP_USER((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u) | (( gfp_t)0x20000u))
| __GFP_NOWARN(( gfp_t)0x200u));
6099 if (unlikely(!ids)(!ids))
6100 return -ENOMEM12;
6101
6102 ids->gaids_number_of_ids = num;
6103 num = 0;
6104 list_for_each_entry(asoc, &(sp->ep->asocs), asocs)for (asoc = ({ const typeof( ((typeof(*asoc) *)0)->asocs )
*__mptr = ((&(sp->ep->asocs))->next); (typeof(*
asoc) *)( (char *)__mptr - __builtin_offsetof(typeof(*asoc), asocs
) );}); &asoc->asocs != (&(sp->ep->asocs)); asoc
= ({ const typeof( ((typeof(*(asoc)) *)0)->asocs ) *__mptr
= ((asoc)->asocs.next); (typeof(*(asoc)) *)( (char *)__mptr
- __builtin_offsetof(typeof(*(asoc)), asocs) );}))
{
6105 ids->gaids_assoc_id[num++] = asoc->assoc_id;
6106 }
6107
6108 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 6108); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
|| copy_to_user(optval, ids, len)) {
6109 kfree(ids);
6110 return -EFAULT14;
6111 }
6112
6113 kfree(ids);
6114 return 0;
6115}
6116
6117/*
6118 * SCTP_PEER_ADDR_THLDS
6119 *
6120 * This option allows us to fetch the partially failed threshold for one or all
6121 * transports in an association. See Section 6.1 of:
6122 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6123 */
6124static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6125 char __user *optval,
6126 int len,
6127 int __user *optlen)
6128{
6129 struct sctp_paddrthlds val;
6130 struct sctp_transport *trans;
6131 struct sctp_association *asoc;
6132
6133 if (len < sizeof(struct sctp_paddrthlds))
6134 return -EINVAL22;
6135 len = sizeof(struct sctp_paddrthlds);
6136 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6137 return -EFAULT14;
6138
6139 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6140 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6141 if (!asoc)
6142 return -ENOENT2;
6143
6144 val.spt_pathpfthld = asoc->pf_retrans;
6145 val.spt_pathmaxrxt = asoc->pathmaxrxt;
6146 } else {
6147 trans = sctp_addr_id2transport(sk, &val.spt_address,
6148 val.spt_assoc_id);
6149 if (!trans)
6150 return -ENOENT2;
6151
6152 val.spt_pathmaxrxt = trans->pathmaxrxt;
6153 val.spt_pathpfthld = trans->pf_retrans;
6154 }
6155
6156 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 6156); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
|| copy_to_user(optval, &val, len))
6157 return -EFAULT14;
6158
6159 return 0;
6160}
6161
6162/*
6163 * SCTP_GET_ASSOC_STATS
6164 *
6165 * This option retrieves local per endpoint statistics. It is modeled
6166 * after OpenSolaris' implementation
6167 */
6168static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6169 char __user *optval,
6170 int __user *optlen)
6171{
6172 struct sctp_assoc_stats sas;
6173 struct sctp_association *asoc = NULL((void *)0);
6174
6175 /* User must provide at least the assoc id */
6176 if (len < sizeof(sctp_assoc_t))
6177 return -EINVAL22;
6178
6179 /* Allow the struct to grow and fill in as much as possible */
6180 len = min_t(size_t, len, sizeof(sas))({ size_t __UNIQUE_ID_min1_70 = (len); size_t __UNIQUE_ID_min2_71
= (sizeof(sas)); (void) (&__UNIQUE_ID_min1_70 == &__UNIQUE_ID_min2_71
); __UNIQUE_ID_min1_70 < __UNIQUE_ID_min2_71 ? __UNIQUE_ID_min1_70
: __UNIQUE_ID_min2_71; })
;
6181
6182 if (copy_from_user(&sas, optval, len))
6183 return -EFAULT14;
6184
6185 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6186 if (!asoc)
6187 return -EINVAL22;
6188
6189 sas.sas_rtxchunks = asoc->stats.rtxchunks;
6190 sas.sas_gapcnt = asoc->stats.gapcnt;
6191 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6192 sas.sas_osacks = asoc->stats.osacks;
6193 sas.sas_isacks = asoc->stats.isacks;
6194 sas.sas_octrlchunks = asoc->stats.octrlchunks;
6195 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6196 sas.sas_oodchunks = asoc->stats.oodchunks;
6197 sas.sas_iodchunks = asoc->stats.iodchunks;
6198 sas.sas_ouodchunks = asoc->stats.ouodchunks;
6199 sas.sas_iuodchunks = asoc->stats.iuodchunks;
6200 sas.sas_idupchunks = asoc->stats.idupchunks;
6201 sas.sas_opackets = asoc->stats.opackets;
6202 sas.sas_ipackets = asoc->stats.ipackets;
6203
6204 /* New high max rto observed, will return 0 if not a single
6205 * RTO update took place. obs_rto_ipaddr will be bogus
6206 * in such a case
6207 */
6208 sas.sas_maxrto = asoc->stats.max_obs_rto;
6209 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,({ size_t __len = (sizeof(struct __kernel_sockaddr_storage));
void *__ret; if (__builtin_constant_p(sizeof(struct __kernel_sockaddr_storage
)) && __len >= 64) __ret = __memcpy((&sas.sas_obs_rto_ipaddr
), (&asoc->stats.obs_rto_ipaddr), __len); else __ret =
__builtin_memcpy((&sas.sas_obs_rto_ipaddr), (&asoc->
stats.obs_rto_ipaddr), __len); __ret; })
6210 sizeof(struct sockaddr_storage))({ size_t __len = (sizeof(struct __kernel_sockaddr_storage));
void *__ret; if (__builtin_constant_p(sizeof(struct __kernel_sockaddr_storage
)) && __len >= 64) __ret = __memcpy((&sas.sas_obs_rto_ipaddr
), (&asoc->stats.obs_rto_ipaddr), __len); else __ret =
__builtin_memcpy((&sas.sas_obs_rto_ipaddr), (&asoc->
stats.obs_rto_ipaddr), __len); __ret; })
;
6211
6212 /* Mark beginning of a new observation period */
6213 asoc->stats.max_obs_rto = asoc->rto_min;
6214
6215 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 6215); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
6216 return -EFAULT14;
6217
6218 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: len:%d, assoc_id:%d\n"
), .lineno = 6218, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id
); } while (0)
;
6219
6220 if (copy_to_user(optval, &sas, len))
6221 return -EFAULT14;
6222
6223 return 0;
6224}
6225
6226static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
6227 char __user *optval,
6228 int __user *optlen)
6229{
6230 int val = 0;
6231
6232 if (len < sizeof(int))
6233 return -EINVAL22;
6234
6235 len = sizeof(int);
6236 if (sctp_sk(sk)->recvrcvinfo)
6237 val = 1;
6238 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 6238); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
6239 return -EFAULT14;
6240 if (copy_to_user(optval, &val, len))
6241 return -EFAULT14;
6242
6243 return 0;
6244}
6245
6246static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
6247 char __user *optval,
6248 int __user *optlen)
6249{
6250 int val = 0;
6251
6252 if (len < sizeof(int))
6253 return -EINVAL22;
6254
6255 len = sizeof(int);
6256 if (sctp_sk(sk)->recvnxtinfo)
6257 val = 1;
6258 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 6258); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
6259 return -EFAULT14;
6260 if (copy_to_user(optval, &val, len))
6261 return -EFAULT14;
6262
6263 return 0;
6264}
6265
6266static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6267 char __user *optval,
6268 int __user *optlen)
6269{
6270 struct sctp_assoc_value params;
6271 struct sctp_association *asoc;
6272 int retval = -EFAULT14;
6273
6274 if (len < sizeof(params)) {
6275 retval = -EINVAL22;
6276 goto out;
6277 }
6278
6279 len = sizeof(params);
6280 if (copy_from_user(&params, optval, len))
6281 goto out;
6282
6283 asoc = sctp_id2assoc(sk, params.assoc_id);
6284 if (asoc) {
6285 params.assoc_value = asoc->prsctp_enable;
6286 } else if (!params.assoc_id) {
6287 struct sctp_sock *sp = sctp_sk(sk);
6288
6289 params.assoc_value = sp->ep->prsctp_enable;
6290 } else {
6291 retval = -EINVAL22;
6292 goto out;
6293 }
6294
6295 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 6295); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
6296 goto out;
6297
6298 if (copy_to_user(optval, &params, len))
6299 goto out;
6300
6301 retval = 0;
6302
6303out:
6304 return retval;
6305}
6306
6307static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
6308 char __user *optval,
6309 int __user *optlen)
6310{
6311 struct sctp_default_prinfo info;
6312 struct sctp_association *asoc;
6313 int retval = -EFAULT14;
6314
6315 if (len < sizeof(info)) {
6316 retval = -EINVAL22;
6317 goto out;
6318 }
6319
6320 len = sizeof(info);
6321 if (copy_from_user(&info, optval, len))
6322 goto out;
6323
6324 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
6325 if (asoc) {
6326 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags)((asoc->default_flags) & 0x0030);
6327 info.pr_value = asoc->default_timetolive;
6328 } else if (!info.pr_assoc_id) {
6329 struct sctp_sock *sp = sctp_sk(sk);
6330
6331 info.pr_policy = SCTP_PR_POLICY(sp->default_flags)((sp->default_flags) & 0x0030);
6332 info.pr_value = sp->default_timetolive;
6333 } else {
6334 retval = -EINVAL22;
6335 goto out;
6336 }
6337
6338 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 6338); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
)
6339 goto out;
6340
6341 if (copy_to_user(optval, &info, len))
6342 goto out;
6343
6344 retval = 0;
6345
6346out:
6347 return retval;
6348}
6349
6350static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
6351 char __user *optval,
6352 int __user *optlen)
6353{
6354 struct sctp_prstatus params;
6355 struct sctp_association *asoc;
6356 int policy;
6357 int retval = -EINVAL22;
6358
6359 if (len < sizeof(params))
6360 goto out;
6361
6362 len = sizeof(params);
6363 if (copy_from_user(&params, optval, len)) {
6364 retval = -EFAULT14;
6365 goto out;
6366 }
6367
6368 policy = params.sprstat_policy;
6369 if (policy & ~SCTP_PR_SCTP_MASK0x0030)
6370 goto out;
6371
6372 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
6373 if (!asoc)
6374 goto out;
6375
6376 if (policy == SCTP_PR_SCTP_NONE0x0000) {
6377 params.sprstat_abandoned_unsent = 0;
6378 params.sprstat_abandoned_sent = 0;
6379 for (policy = 0; policy <= SCTP_PR_INDEX(MAX)((0x0030 >> 4) - 1); policy++) {
6380 params.sprstat_abandoned_unsent +=
6381 asoc->abandoned_unsent[policy];
6382 params.sprstat_abandoned_sent +=
6383 asoc->abandoned_sent[policy];
6384 }
6385 } else {
6386 params.sprstat_abandoned_unsent =
6387 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)((policy >> 4) - 1)];
6388 params.sprstat_abandoned_sent =
6389 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)((policy >> 4) - 1)];
6390 }
6391
6392 if (put_user(len, optlen)({ int __ret_pu; __typeof__(*(optlen)) __pu_val; (void)0; __might_fault
("net/sctp/socket.c", 6392); __pu_val = len; switch (sizeof(*
(optlen))) { case 1: asm volatile("call __put_user_" "1" : "=a"
(__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c" (optlen
) : "ebx"); break; case 2: asm volatile("call __put_user_" "2"
: "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)), "c"
(optlen) : "ebx"); break; case 4: asm volatile("call __put_user_"
"4" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; case 8: asm volatile("call __put_user_"
"8" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; default: asm volatile("call __put_user_"
"X" : "=a" (__ret_pu) : "0" ((typeof(*(optlen)))(__pu_val)),
"c" (optlen) : "ebx"); break; } __builtin_expect(__ret_pu, 0
); })
) {
6393 retval = -EFAULT14;
6394 goto out;
6395 }
6396
6397 if (copy_to_user(optval, &params, len)) {
6398 retval = -EFAULT14;
6399 goto out;
6400 }
6401
6402 retval = 0;
6403
6404out:
6405 return retval;
6406}
6407
6408static int sctp_getsockopt(struct sock *sk, int level, int optname,
6409 char __user *optval, int __user *optlen)
6410{
6411 int retval = 0;
6412 int len;
6413
6414 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: sk:%p, optname:%d\n"
), .lineno = 6414, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: sk:%p, optname:%d\n", __func__, sk, optname); } while (
0)
;
6415
6416 /* I can hardly begin to describe how wrong this is. This is
6417 * so broken as to be worse than useless. The API draft
6418 * REALLY is NOT helpful here... I am not convinced that the
6419 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6420 * are at all well-founded.
6421 */
6422 if (level != SOL_SCTP132) {
1
Assuming 'level' is equal to 132
2
Taking false branch
6423 struct sctp_af *af = sctp_sk(sk)->pf->af;
6424
6425 retval = af->getsockopt(sk, level, optname, optval, optlen);
6426 return retval;
6427 }
6428
6429 if (get_user(len, optlen)({ int __ret_gu; register __typeof__(__builtin_choose_expr(sizeof
(*(optlen)) > sizeof(0UL), 0ULL, 0UL)) __val_gu asm("%""rdx"
); register void *__sp asm("rsp"); (void)0; __might_fault("net/sctp/socket.c"
, 6429); asm volatile("call __get_user_%P4" : "=a" (__ret_gu)
, "=r" (__val_gu), "+r" (__sp) : "0" (optlen), "i" (sizeof(*(
optlen)))); (len) = ( __typeof__(*(optlen))) __val_gu; clang_analyzer_taint
(&len); __builtin_expect(__ret_gu, 0); })
)
3
Taking false branch
6430 return -EFAULT14;
6431
6432 if (len < 0)
4
Assuming 'len' is >= 0
5
Taking false branch
6433 return -EINVAL22;
6434
6435 lock_sock(sk);
6436
6437 switch (optname) {
6
Control jumps to 'case 108:' at line 6465
6438 case SCTP_STATUS14:
6439 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6440 break;
6441 case SCTP_DISABLE_FRAGMENTS8:
6442 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6443 optlen);
6444 break;
6445 case SCTP_EVENTS11:
6446 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6447 break;
6448 case SCTP_AUTOCLOSE4:
6449 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6450 break;
6451 case SCTP_SOCKOPT_PEELOFF102:
6452 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6453 break;
6454 case SCTP_PEER_ADDR_PARAMS9:
6455 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6456 optlen);
6457 break;
6458 case SCTP_DELAYED_SACK16:
6459 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6460 optlen);
6461 break;
6462 case SCTP_INITMSG2:
6463 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6464 break;
6465 case SCTP_GET_PEER_ADDRS108:
6466 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7
Calling 'sctp_getsockopt_peer_addrs'
6467 optlen);
6468 break;
6469 case SCTP_GET_LOCAL_ADDRS109:
6470 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6471 optlen);
6472 break;
6473 case SCTP_SOCKOPT_CONNECTX3111:
6474 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6475 break;
6476 case SCTP_DEFAULT_SEND_PARAM10:
6477 retval = sctp_getsockopt_default_send_param(sk, len,
6478 optval, optlen);
6479 break;
6480 case SCTP_DEFAULT_SNDINFO34:
6481 retval = sctp_getsockopt_default_sndinfo(sk, len,
6482 optval, optlen);
6483 break;
6484 case SCTP_PRIMARY_ADDR6:
6485 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6486 break;
6487 case SCTP_NODELAY3:
6488 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6489 break;
6490 case SCTP_RTOINFO0:
6491 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6492 break;
6493 case SCTP_ASSOCINFO1:
6494 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6495 break;
6496 case SCTP_I_WANT_MAPPED_V4_ADDR12:
6497 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6498 break;
6499 case SCTP_MAXSEG13:
6500 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6501 break;
6502 case SCTP_GET_PEER_ADDR_INFO15:
6503 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6504 optlen);
6505 break;
6506 case SCTP_ADAPTATION_LAYER7:
6507 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6508 optlen);
6509 break;
6510 case SCTP_CONTEXT17:
6511 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6512 break;
6513 case SCTP_FRAGMENT_INTERLEAVE18:
6514 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6515 optlen);
6516 break;
6517 case SCTP_PARTIAL_DELIVERY_POINT19:
6518 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6519 optlen);
6520 break;
6521 case SCTP_MAX_BURST20:
6522 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6523 break;
6524 case SCTP_AUTH_KEY23:
6525 case SCTP_AUTH_CHUNK21:
6526 case SCTP_AUTH_DELETE_KEY25:
6527 retval = -EOPNOTSUPP95;
6528 break;
6529 case SCTP_HMAC_IDENT22:
6530 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6531 break;
6532 case SCTP_AUTH_ACTIVE_KEY24:
6533 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6534 break;
6535 case SCTP_PEER_AUTH_CHUNKS26:
6536 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6537 optlen);
6538 break;
6539 case SCTP_LOCAL_AUTH_CHUNKS27:
6540 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6541 optlen);
6542 break;
6543 case SCTP_GET_ASSOC_NUMBER28:
6544 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6545 break;
6546 case SCTP_GET_ASSOC_ID_LIST29:
6547 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6548 break;
6549 case SCTP_AUTO_ASCONF30:
6550 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6551 break;
6552 case SCTP_PEER_ADDR_THLDS31:
6553 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6554 break;
6555 case SCTP_GET_ASSOC_STATS112:
6556 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6557 break;
6558 case SCTP_RECVRCVINFO32:
6559 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6560 break;
6561 case SCTP_RECVNXTINFO33:
6562 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6563 break;
6564 case SCTP_PR_SUPPORTED113:
6565 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
6566 break;
6567 case SCTP_DEFAULT_PRINFO114:
6568 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
6569 optlen);
6570 break;
6571 case SCTP_PR_ASSOC_STATUS115:
6572 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
6573 optlen);
6574 break;
6575 default:
6576 retval = -ENOPROTOOPT92;
6577 break;
6578 }
6579
6580 release_sock(sk);
6581 return retval;
6582}
6583
6584static int sctp_hash(struct sock *sk)
6585{
6586 /* STUB */
6587 return 0;
6588}
6589
6590static void sctp_unhash(struct sock *sk)
6591{
6592 /* STUB */
6593}
6594
6595/* Check if port is acceptable. Possibly find first available port.
6596 *
6597 * The port hash table (contained in the 'global' SCTP protocol storage
6598 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6599 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6600 * list (the list number is the port number hashed out, so as you
6601 * would expect from a hash function, all the ports in a given list have
6602 * such a number that hashes out to the same list number; you were
6603 * expecting that, right?); so each list has a set of ports, with a
6604 * link to the socket (struct sock) that uses it, the port number and
6605 * a fastreuse flag (FIXME: NPI ipg).
6606 */
6607static struct sctp_bind_bucket *sctp_bucket_create(
6608 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6609
6610static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6611{
6612 struct sctp_bind_hashbucket *head; /* hash list */
6613 struct sctp_bind_bucket *pp;
6614 unsigned short snum;
6615 int ret;
6616
6617 snum = ntohs(addr->v4.sin_port)(__builtin_constant_p((__u16)(( __u16)(__be16)(addr->v4.sin_port
))) ? ((__u16)( (((__u16)(( __u16)(__be16)(addr->v4.sin_port
)) & (__u16)0x00ffU) << 8) | (((__u16)(( __u16)(__be16
)(addr->v4.sin_port)) & (__u16)0xff00U) >> 8))) :
__fswab16(( __u16)(__be16)(addr->v4.sin_port)))
;
6618
6619 pr_debug("%s: begins, snum:%d\n", __func__, snum)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: begins, snum:%d\n"
), .lineno = 6619, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: begins, snum:%d\n", __func__, snum); } while (0)
;
6620
6621 local_bh_disable();
6622
6623 if (snum == 0) {
6624 /* Search for an available port. */
6625 int low, high, remaining, index;
6626 unsigned int rover;
6627 struct net *net = sock_net(sk);
6628
6629 inet_get_local_port_range(net, &low, &high);
6630 remaining = (high - low) + 1;
6631 rover = prandom_u32() % remaining + low;
6632
6633 do {
6634 rover++;
6635 if ((rover < low) || (rover > high))
6636 rover = low;
6637 if (inet_is_local_reserved_port(net, rover))
6638 continue;
6639 index = sctp_phashfn(sock_net(sk), rover);
6640 head = &sctp_port_hashtable(sctp_globals.port_hashtable)[index];
6641 spin_lock(&head->lock);
6642 sctp_for_each_hentry(pp, &head->chain)for (pp = ({ typeof((&head->chain)->first) ____ptr =
((&head->chain)->first); ____ptr ? ({ const typeof
( ((typeof(*(pp)) *)0)->node ) *__mptr = (____ptr); (typeof
(*(pp)) *)( (char *)__mptr - __builtin_offsetof(typeof(*(pp))
, node) );}) : ((void *)0); }); pp; pp = ({ typeof((pp)->node
.next) ____ptr = ((pp)->node.next); ____ptr ? ({ const typeof
( ((typeof(*(pp)) *)0)->node ) *__mptr = (____ptr); (typeof
(*(pp)) *)( (char *)__mptr - __builtin_offsetof(typeof(*(pp))
, node) );}) : ((void *)0); }))
6643 if ((pp->port == rover) &&
6644 net_eq(sock_net(sk), pp->net))
6645 goto next;
6646 break;
6647 next:
6648 spin_unlock(&head->lock);
6649 } while (--remaining > 0);
6650
6651 /* Exhausted local port range during search? */
6652 ret = 1;
6653 if (remaining <= 0)
6654 goto fail;
6655
6656 /* OK, here is the one we will use. HEAD (the port
6657 * hash table list entry) is non-NULL and we hold it's
6658 * mutex.
6659 */
6660 snum = rover;
6661 } else {
6662 /* We are given an specific port number; we verify
6663 * that it is not being used. If it is used, we will
6664 * exahust the search in the hash list corresponding
6665 * to the port number (snum) - we detect that with the
6666 * port iterator, pp being NULL.
6667 */
6668 head = &sctp_port_hashtable(sctp_globals.port_hashtable)[sctp_phashfn(sock_net(sk), snum)];
6669 spin_lock(&head->lock);
6670 sctp_for_each_hentry(pp, &head->chain)for (pp = ({ typeof((&head->chain)->first) ____ptr =
((&head->chain)->first); ____ptr ? ({ const typeof
( ((typeof(*(pp)) *)0)->node ) *__mptr = (____ptr); (typeof
(*(pp)) *)( (char *)__mptr - __builtin_offsetof(typeof(*(pp))
, node) );}) : ((void *)0); }); pp; pp = ({ typeof((pp)->node
.next) ____ptr = ((pp)->node.next); ____ptr ? ({ const typeof
( ((typeof(*(pp)) *)0)->node ) *__mptr = (____ptr); (typeof
(*(pp)) *)( (char *)__mptr - __builtin_offsetof(typeof(*(pp))
, node) );}) : ((void *)0); }))
{
6671 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6672 goto pp_found;
6673 }
6674 }
6675 pp = NULL((void *)0);
6676 goto pp_not_found;
6677pp_found:
6678 if (!hlist_empty(&pp->owner)) {
6679 /* We had a port hash table hit - there is an
6680 * available port (pp != NULL) and it is being
6681 * used by other socket (pp->owner not empty); that other
6682 * socket is going to be sk2.
6683 */
6684 int reuse = sk->sk_reuse__sk_common.skc_reuse;
6685 struct sock *sk2;
6686
6687 pr_debug("%s: found a possible match\n", __func__)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: found a possible match\n"
), .lineno = 6687, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: found a possible match\n", __func__); } while (0)
;
6688
6689 if (pp->fastreuse && sk->sk_reuse__sk_common.skc_reuse &&
6690 sk->sk_state__sk_common.skc_state != SCTP_SS_LISTENING)
6691 goto success;
6692
6693 /* Run through the list of sockets bound to the port
6694 * (pp->port) [via the pointers bind_next and
6695 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6696 * we get the endpoint they describe and run through
6697 * the endpoint's list of IP (v4 or v6) addresses,
6698 * comparing each of the addresses with the address of
6699 * the socket sk. If we find a match, then that means
6700 * that this port/socket (sk) combination are already
6701 * in an endpoint.
6702 */
6703 sk_for_each_bound(sk2, &pp->owner)for (sk2 = ({ typeof((&pp->owner)->first) ____ptr =
((&pp->owner)->first); ____ptr ? ({ const typeof( (
(typeof(*(sk2)) *)0)->__sk_common.skc_bind_node ) *__mptr =
(____ptr); (typeof(*(sk2)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(sk2)), __sk_common.skc_bind_node) );}) : ((void *)0
); }); sk2; sk2 = ({ typeof((sk2)->__sk_common.skc_bind_node
.next) ____ptr = ((sk2)->__sk_common.skc_bind_node.next); ____ptr
? ({ const typeof( ((typeof(*(sk2)) *)0)->__sk_common.skc_bind_node
) *__mptr = (____ptr); (typeof(*(sk2)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(sk2)), __sk_common.skc_bind_node) );}) : ((void *)0
); }))
{
6704 struct sctp_endpoint *ep2;
6705 ep2 = sctp_sk(sk2)->ep;
6706
6707 if (sk == sk2 ||
6708 (reuse && sk2->sk_reuse__sk_common.skc_reuse &&
6709 sk2->sk_state__sk_common.skc_state != SCTP_SS_LISTENING))
6710 continue;
6711
6712 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6713 sctp_sk(sk2), sctp_sk(sk))) {
6714 ret = (long)sk2;
6715 goto fail_unlock;
6716 }
6717 }
6718
6719 pr_debug("%s: found a match\n", __func__)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: found a match\n"
), .lineno = 6719, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: found a match\n", __func__); } while (0)
;
6720 }
6721pp_not_found:
6722 /* If there was a hash table miss, create a new port. */
6723 ret = 1;
6724 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6725 goto fail_unlock;
6726
6727 /* In either case (hit or miss), make sure fastreuse is 1 only
6728 * if sk->sk_reuse is too (that is, if the caller requested
6729 * SO_REUSEADDR on this socket -sk-).
6730 */
6731 if (hlist_empty(&pp->owner)) {
6732 if (sk->sk_reuse__sk_common.skc_reuse && sk->sk_state__sk_common.skc_state != SCTP_SS_LISTENING)
6733 pp->fastreuse = 1;
6734 else
6735 pp->fastreuse = 0;
6736 } else if (pp->fastreuse &&
6737 (!sk->sk_reuse__sk_common.skc_reuse || sk->sk_state__sk_common.skc_state == SCTP_SS_LISTENING))
6738 pp->fastreuse = 0;
6739
6740 /* We are set, so fill up all the data in the hash table
6741 * entry, tie the socket list information with the rest of the
6742 * sockets FIXME: Blurry, NPI (ipg).
6743 */
6744success:
6745 if (!sctp_sk(sk)->bind_hash) {
6746 inet_sk(sk)->inet_numsk.__sk_common.skc_num = snum;
6747 sk_add_bind_node(sk, &pp->owner);
6748 sctp_sk(sk)->bind_hash = pp;
6749 }
6750 ret = 0;
6751
6752fail_unlock:
6753 spin_unlock(&head->lock);
6754
6755fail:
6756 local_bh_enable();
6757 return ret;
6758}
6759
6760/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6761 * port is requested.
6762 */
6763static int sctp_get_port(struct sock *sk, unsigned short snum)
6764{
6765 union sctp_addr addr;
6766 struct sctp_af *af = sctp_sk(sk)->pf->af;
6767
6768 /* Set up a dummy address struct from the sk. */
6769 af->from_sk(&addr, sk);
6770 addr.v4.sin_port = htons(snum)(( __be16)(__builtin_constant_p((__u16)((snum))) ? ((__u16)( (
((__u16)((snum)) & (__u16)0x00ffU) << 8) | (((__u16
)((snum)) & (__u16)0xff00U) >> 8))) : __fswab16((snum
))))
;
6771
6772 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6773 return !!sctp_get_port_local(sk, &addr);
6774}
6775
6776/*
6777 * Move a socket to LISTENING state.
6778 */
6779static int sctp_listen_start(struct sock *sk, int backlog)
6780{
6781 struct sctp_sock *sp = sctp_sk(sk);
6782 struct sctp_endpoint *ep = sp->ep;
6783 struct crypto_shash *tfm = NULL((void *)0);
6784 char alg[32];
6785
6786 /* Allocate HMAC for generating cookie. */
6787 if (!sp->hmac && sp->sctp_hmac_alg) {
6788 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6789 tfm = crypto_alloc_shash(alg, 0, 0);
6790 if (IS_ERR(tfm)) {
6791 net_info_ratelimited("failed to load transform for %s: %ld\n",do { if (net_ratelimit()) printk("\001" "6" "sctp" ": " "failed to load transform for %s: %ld\n"
, sp->sctp_hmac_alg, PTR_ERR(tfm)); } while (0)
6792 sp->sctp_hmac_alg, PTR_ERR(tfm))do { if (net_ratelimit()) printk("\001" "6" "sctp" ": " "failed to load transform for %s: %ld\n"
, sp->sctp_hmac_alg, PTR_ERR(tfm)); } while (0)
;
6793 return -ENOSYS38;
6794 }
6795 sctp_sk(sk)->hmac = tfm;
6796 }
6797
6798 /*
6799 * If a bind() or sctp_bindx() is not called prior to a listen()
6800 * call that allows new associations to be accepted, the system
6801 * picks an ephemeral port and will choose an address set equivalent
6802 * to binding with a wildcard address.
6803 *
6804 * This is not currently spelled out in the SCTP sockets
6805 * extensions draft, but follows the practice as seen in TCP
6806 * sockets.
6807 *
6808 */
6809 sk->sk_state__sk_common.skc_state = SCTP_SS_LISTENING;
6810 if (!ep->base.bind_addr.port) {
6811 if (sctp_autobind(sk))
6812 return -EAGAIN11;
6813 } else {
6814 if (sctp_get_port(sk, inet_sk(sk)->inet_numsk.__sk_common.skc_num)) {
6815 sk->sk_state__sk_common.skc_state = SCTP_SS_CLOSED;
6816 return -EADDRINUSE98;
6817 }
6818 }
6819
6820 sk->sk_max_ack_backlog = backlog;
6821 sctp_hash_endpoint(ep);
6822 return 0;
6823}
6824
6825/*
6826 * 4.1.3 / 5.1.3 listen()
6827 *
6828 * By default, new associations are not accepted for UDP style sockets.
6829 * An application uses listen() to mark a socket as being able to
6830 * accept new associations.
6831 *
6832 * On TCP style sockets, applications use listen() to ready the SCTP
6833 * endpoint for accepting inbound associations.
6834 *
6835 * On both types of endpoints a backlog of '0' disables listening.
6836 *
6837 * Move a socket to LISTENING state.
6838 */
6839int sctp_inet_listen(struct socket *sock, int backlog)
6840{
6841 struct sock *sk = sock->sk;
6842 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6843 int err = -EINVAL22;
6844
6845 if (unlikely(backlog < 0)(backlog < 0))
6846 return err;
6847
6848 lock_sock(sk);
6849
6850 /* Peeled-off sockets are not allowed to listen(). */
6851 if (sctp_style(sk, UDP_HIGH_BANDWIDTH)__sctp_style((sk), (SCTP_SOCKET_UDP_HIGH_BANDWIDTH)))
6852 goto out;
6853
6854 if (sock->state != SS_UNCONNECTED)
6855 goto out;
6856
6857 /* If backlog is zero, disable listening. */
6858 if (!backlog) {
6859 if (sctp_sstate(sk, CLOSED)__sctp_sstate((sk), (SCTP_SS_CLOSED)))
6860 goto out;
6861
6862 err = 0;
6863 sctp_unhash_endpoint(ep);
6864 sk->sk_state__sk_common.skc_state = SCTP_SS_CLOSED;
6865 if (sk->sk_reuse__sk_common.skc_reuse)
6866 sctp_sk(sk)->bind_hash->fastreuse = 1;
6867 goto out;
6868 }
6869
6870 /* If we are already listening, just update the backlog */
6871 if (sctp_sstate(sk, LISTENING)__sctp_sstate((sk), (SCTP_SS_LISTENING)))
6872 sk->sk_max_ack_backlog = backlog;
6873 else {
6874 err = sctp_listen_start(sk, backlog);
6875 if (err)
6876 goto out;
6877 }
6878
6879 err = 0;
6880out:
6881 release_sock(sk);
6882 return err;
6883}
6884
6885/*
6886 * This function is done by modeling the current datagram_poll() and the
6887 * tcp_poll(). Note that, based on these implementations, we don't
6888 * lock the socket in this function, even though it seems that,
6889 * ideally, locking or some other mechanisms can be used to ensure
6890 * the integrity of the counters (sndbuf and wmem_alloc) used
6891 * in this place. We assume that we don't need locks either until proven
6892 * otherwise.
6893 *
6894 * Another thing to note is that we include the Async I/O support
6895 * here, again, by modeling the current TCP/UDP code. We don't have
6896 * a good way to test with it yet.
6897 */
6898unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6899{
6900 struct sock *sk = sock->sk;
6901 struct sctp_sock *sp = sctp_sk(sk);
6902 unsigned int mask;
6903
6904 poll_wait(file, sk_sleep(sk), wait);
6905
6906 sock_rps_record_flow(sk);
6907
6908 /* A TCP-style listening socket becomes readable when the accept queue
6909 * is not empty.
6910 */
6911 if (sctp_style(sk, TCP)__sctp_style((sk), (SCTP_SOCKET_TCP)) && sctp_sstate(sk, LISTENING)__sctp_sstate((sk), (SCTP_SS_LISTENING)))
6912 return (!list_empty(&sp->ep->asocs)) ?
6913 (POLLIN0x0001 | POLLRDNORM0x0040) : 0;
6914
6915 mask = 0;
6916
6917 /* Is there any exceptional events? */
6918 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6919 mask |= POLLERR0x0008 |
6920 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI0x0002 : 0);
6921 if (sk->sk_shutdown & RCV_SHUTDOWN1)
6922 mask |= POLLRDHUP0x2000 | POLLIN0x0001 | POLLRDNORM0x0040;
6923 if (sk->sk_shutdown == SHUTDOWN_MASK3)
6924 mask |= POLLHUP0x0010;
6925
6926 /* Is it readable? Reconsider this code with TCP-style support. */
6927 if (!skb_queue_empty(&sk->sk_receive_queue))
6928 mask |= POLLIN0x0001 | POLLRDNORM0x0040;
6929
6930 /* The association is either gone or not ready. */
6931 if (!sctp_style(sk, UDP)__sctp_style((sk), (SCTP_SOCKET_UDP)) && sctp_sstate(sk, CLOSED)__sctp_sstate((sk), (SCTP_SS_CLOSED)))
6932 return mask;
6933
6934 /* Is it writable? */
6935 if (sctp_writeable(sk)) {
6936 mask |= POLLOUT0x0004 | POLLWRNORM0x0100;
6937 } else {
6938 sk_set_bit(SOCKWQ_ASYNC_NOSPACE0, sk);
6939 /*
6940 * Since the socket is not locked, the buffer
6941 * might be made available after the writeable check and
6942 * before the bit is set. This could cause a lost I/O
6943 * signal. tcp_poll() has a race breaker for this race
6944 * condition. Based on their implementation, we put
6945 * in the following code to cover it as well.
6946 */
6947 if (sctp_writeable(sk))
6948 mask |= POLLOUT0x0004 | POLLWRNORM0x0100;
6949 }
6950 return mask;
6951}
6952
6953/********************************************************************
6954 * 2nd Level Abstractions
6955 ********************************************************************/
6956
6957static struct sctp_bind_bucket *sctp_bucket_create(
6958 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6959{
6960 struct sctp_bind_bucket *pp;
6961
6962 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC((( gfp_t)0x20u)|(( gfp_t)0x80000u)|(( gfp_t)0x2000000u)));
6963 if (pp) {
6964 SCTP_DBG_OBJCNT_INC(bind_bucket)atomic_inc(&sctp_dbg_objcnt_bind_bucket);
6965 pp->port = snum;
6966 pp->fastreuse = 0;
6967 INIT_HLIST_HEAD(&pp->owner)((&pp->owner)->first = ((void *)0));
6968 pp->net = net;
6969 hlist_add_head(&pp->node, &head->chain);
6970 }
6971 return pp;
6972}
6973
6974/* Caller must hold hashbucket lock for this tb with local BH disabled */
6975static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6976{
6977 if (pp && hlist_empty(&pp->owner)) {
6978 __hlist_del(&pp->node);
6979 kmem_cache_free(sctp_bucket_cachep, pp);
6980 SCTP_DBG_OBJCNT_DEC(bind_bucket)atomic_dec(&sctp_dbg_objcnt_bind_bucket);
6981 }
6982}
6983
6984/* Release this socket's reference to a local port. */
6985static inlineinline __attribute__((no_instrument_function)) void __sctp_put_port(struct sock *sk)
6986{
6987 struct sctp_bind_hashbucket *head =
6988 &sctp_port_hashtable(sctp_globals.port_hashtable)[sctp_phashfn(sock_net(sk),
6989 inet_sk(sk)->inet_numsk.__sk_common.skc_num)];
6990 struct sctp_bind_bucket *pp;
6991
6992 spin_lock(&head->lock);
6993 pp = sctp_sk(sk)->bind_hash;
6994 __sk_del_bind_node(sk);
6995 sctp_sk(sk)->bind_hash = NULL((void *)0);
6996 inet_sk(sk)->inet_numsk.__sk_common.skc_num = 0;
6997 sctp_bucket_destroy(pp);
6998 spin_unlock(&head->lock);
6999}
7000
7001void sctp_put_port(struct sock *sk)
7002{
7003 local_bh_disable();
7004 __sctp_put_port(sk);
7005 local_bh_enable();
7006}
7007
7008/*
7009 * The system picks an ephemeral port and choose an address set equivalent
7010 * to binding with a wildcard address.
7011 * One of those addresses will be the primary address for the association.
7012 * This automatically enables the multihoming capability of SCTP.
7013 */
7014static int sctp_autobind(struct sock *sk)
7015{
7016 union sctp_addr autoaddr;
7017 struct sctp_af *af;
7018 __be16 port;
7019
7020 /* Initialize a local sockaddr structure to INADDR_ANY. */
7021 af = sctp_sk(sk)->pf->af;
7022
7023 port = htons(inet_sk(sk)->inet_num)(( __be16)(__builtin_constant_p((__u16)((inet_sk(sk)->sk.__sk_common
.skc_num))) ? ((__u16)( (((__u16)((inet_sk(sk)->sk.__sk_common
.skc_num)) & (__u16)0x00ffU) << 8) | (((__u16)((inet_sk
(sk)->sk.__sk_common.skc_num)) & (__u16)0xff00U) >>
8))) : __fswab16((inet_sk(sk)->sk.__sk_common.skc_num))))
;
7024 af->inaddr_any(&autoaddr, port);
7025
7026 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
7027}
7028
7029/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
7030 *
7031 * From RFC 2292
7032 * 4.2 The cmsghdr Structure *
7033 *
7034 * When ancillary data is sent or received, any number of ancillary data
7035 * objects can be specified by the msg_control and msg_controllen members of
7036 * the msghdr structure, because each object is preceded by
7037 * a cmsghdr structure defining the object's length (the cmsg_len member).
7038 * Historically Berkeley-derived implementations have passed only one object
7039 * at a time, but this API allows multiple objects to be
7040 * passed in a single call to sendmsg() or recvmsg(). The following example
7041 * shows two ancillary data objects in a control buffer.
7042 *
7043 * |<--------------------------- msg_controllen -------------------------->|
7044 * | |
7045 *
7046 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
7047 *
7048 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
7049 * | | |
7050 *
7051 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
7052 *
7053 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
7054 * | | | | |
7055 *
7056 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7057 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
7058 *
7059 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
7060 *
7061 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
7062 * ^
7063 * |
7064 *
7065 * msg_control
7066 * points here
7067 */
7068static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
7069{
7070 struct cmsghdr *cmsg;
7071 struct msghdr *my_msg = (struct msghdr *)msg;
7072
7073 for_each_cmsghdr(cmsg, my_msg)for (cmsg = (((my_msg)->msg_controllen) >= sizeof(struct
cmsghdr) ? (struct cmsghdr *)((my_msg)->msg_control) : (struct
cmsghdr *)((void *)0)); cmsg; cmsg = cmsg_nxthdr((my_msg), (
cmsg)))
{
7074 if (!CMSG_OK(my_msg, cmsg)((cmsg)->cmsg_len >= sizeof(struct cmsghdr) && (
cmsg)->cmsg_len <= (unsigned long) ((my_msg)->msg_controllen
- ((char *)(cmsg) - (char *)(my_msg)->msg_control)))
)
7075 return -EINVAL22;
7076
7077 /* Should we parse this header or ignore? */
7078 if (cmsg->cmsg_level != IPPROTO_SCTPIPPROTO_SCTP)
7079 continue;
7080
7081 /* Strictly check lengths following example in SCM code. */
7082 switch (cmsg->cmsg_type) {
7083 case SCTP_INITSCTP_INIT:
7084 /* SCTP Socket API Extension
7085 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
7086 *
7087 * This cmsghdr structure provides information for
7088 * initializing new SCTP associations with sendmsg().
7089 * The SCTP_INITMSG socket option uses this same data
7090 * structure. This structure is not used for
7091 * recvmsg().
7092 *
7093 * cmsg_level cmsg_type cmsg_data[]
7094 * ------------ ------------ ----------------------
7095 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
7096 */
7097 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))(( ((sizeof(struct cmsghdr))+sizeof(long)-1) & ~(sizeof(long
)-1) ) + (sizeof(struct sctp_initmsg)))
)
7098 return -EINVAL22;
7099
7100 cmsgs->init = CMSG_DATA(cmsg)((void *)((char *)(cmsg) + ( ((sizeof(struct cmsghdr))+sizeof
(long)-1) & ~(sizeof(long)-1) )))
;
7101 break;
7102
7103 case SCTP_SNDRCVSCTP_SNDRCV:
7104 /* SCTP Socket API Extension
7105 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
7106 *
7107 * This cmsghdr structure specifies SCTP options for
7108 * sendmsg() and describes SCTP header information
7109 * about a received message through recvmsg().
7110 *
7111 * cmsg_level cmsg_type cmsg_data[]
7112 * ------------ ------------ ----------------------
7113 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
7114 */
7115 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))(( ((sizeof(struct cmsghdr))+sizeof(long)-1) & ~(sizeof(long
)-1) ) + (sizeof(struct sctp_sndrcvinfo)))
)
7116 return -EINVAL22;
7117
7118 cmsgs->srinfo = CMSG_DATA(cmsg)((void *)((char *)(cmsg) + ( ((sizeof(struct cmsghdr))+sizeof
(long)-1) & ~(sizeof(long)-1) )))
;
7119
7120 if (cmsgs->srinfo->sinfo_flags &
7121 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7122 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK0x0030 |
7123 SCTP_ABORT | SCTP_EOF))
7124 return -EINVAL22;
7125 break;
7126
7127 case SCTP_SNDINFOSCTP_SNDINFO:
7128 /* SCTP Socket API Extension
7129 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
7130 *
7131 * This cmsghdr structure specifies SCTP options for
7132 * sendmsg(). This structure and SCTP_RCVINFO replaces
7133 * SCTP_SNDRCV which has been deprecated.
7134 *
7135 * cmsg_level cmsg_type cmsg_data[]
7136 * ------------ ------------ ---------------------
7137 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
7138 */
7139 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo))(( ((sizeof(struct cmsghdr))+sizeof(long)-1) & ~(sizeof(long
)-1) ) + (sizeof(struct sctp_sndinfo)))
)
7140 return -EINVAL22;
7141
7142 cmsgs->sinfo = CMSG_DATA(cmsg)((void *)((char *)(cmsg) + ( ((sizeof(struct cmsghdr))+sizeof
(long)-1) & ~(sizeof(long)-1) )))
;
7143
7144 if (cmsgs->sinfo->snd_flags &
7145 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
7146 SCTP_SACK_IMMEDIATELY | SCTP_PR_SCTP_MASK0x0030 |
7147 SCTP_ABORT | SCTP_EOF))
7148 return -EINVAL22;
7149 break;
7150 default:
7151 return -EINVAL22;
7152 }
7153 }
7154
7155 return 0;
7156}
7157
7158/*
7159 * Wait for a packet..
7160 * Note: This function is the same function as in core/datagram.c
7161 * with a few modifications to make lksctp work.
7162 */
7163static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
7164{
7165 int error;
7166 DEFINE_WAIT(wait)wait_queue_t wait = { .private = get_current(), .func = autoremove_wake_function
, .task_list = { &((wait).task_list), &((wait).task_list
) }, }
;
7167
7168 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE1);
7169
7170 /* Socket errors? */
7171 error = sock_error(sk);
7172 if (error)
7173 goto out;
7174
7175 if (!skb_queue_empty(&sk->sk_receive_queue))
7176 goto ready;
7177
7178 /* Socket shut down? */
7179 if (sk->sk_shutdown & RCV_SHUTDOWN1)
7180 goto out;
7181
7182 /* Sequenced packets can come disconnected. If so we report the
7183 * problem.
7184 */
7185 error = -ENOTCONN107;
7186
7187 /* Is there a good reason to think that we may receive some data? */
7188 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)__sctp_sstate((sk), (SCTP_SS_LISTENING)))
7189 goto out;
7190
7191 /* Handle signals. */
7192 if (signal_pending(currentget_current()))
7193 goto interrupted;
7194
7195 /* Let another process have a go. Since we are going to sleep
7196 * anyway. Note: This may cause odd behaviors if the message
7197 * does not fit in the user's buffer, but this seems to be the
7198 * only way to honor MSG_DONTWAIT realistically.
7199 */
7200 release_sock(sk);
7201 *timeo_p = schedule_timeout(*timeo_p);
7202 lock_sock(sk);
7203
7204ready:
7205 finish_wait(sk_sleep(sk), &wait);
7206 return 0;
7207
7208interrupted:
7209 error = sock_intr_errno(*timeo_p);
7210
7211out:
7212 finish_wait(sk_sleep(sk), &wait);
7213 *err = error;
7214 return error;
7215}
7216
7217/* Receive a datagram.
7218 * Note: This is pretty much the same routine as in core/datagram.c
7219 * with a few changes to make lksctp work.
7220 */
7221struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
7222 int noblock, int *err)
7223{
7224 int error;
7225 struct sk_buff *skb;
7226 long timeo;
7227
7228 timeo = sock_rcvtimeo(sk, noblock);
7229
7230 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: timeo:%ld, max:%ld\n"
), .lineno = 7231, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: timeo:%ld, max:%ld\n", __func__, timeo, ((long)(~0UL>>
1))); } while (0)
7231 MAX_SCHEDULE_TIMEOUT)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: timeo:%ld, max:%ld\n"
), .lineno = 7231, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: timeo:%ld, max:%ld\n", __func__, timeo, ((long)(~0UL>>
1))); } while (0)
;
7232
7233 do {
7234 /* Again only user level code calls this function,
7235 * so nothing interrupt level
7236 * will suddenly eat the receive_queue.
7237 *
7238 * Look at current nfs client by the way...
7239 * However, this function was correct in any case. 8)
7240 */
7241 if (flags & MSG_PEEK2) {
7242 skb = skb_peek(&sk->sk_receive_queue);
7243 if (skb)
7244 atomic_inc(&skb->users);
7245 } else {
7246 skb = __skb_dequeue(&sk->sk_receive_queue);
7247 }
7248
7249 if (skb)
7250 return skb;
7251
7252 /* Caller is allowed not to check sk->sk_err before calling. */
7253 error = sock_error(sk);
7254 if (error)
7255 goto no_packet;
7256
7257 if (sk->sk_shutdown & RCV_SHUTDOWN1)
7258 break;
7259
7260 if (sk_can_busy_loop(sk) &&
7261 sk_busy_loop(sk, noblock))
7262 continue;
7263
7264 /* User doesn't want to wait. */
7265 error = -EAGAIN11;
7266 if (!timeo)
7267 goto no_packet;
7268 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
7269
7270 return NULL((void *)0);
7271
7272no_packet:
7273 *err = error;
7274 return NULL((void *)0);
7275}
7276
7277/* If sndbuf has changed, wake up per association sndbuf waiters. */
7278static void __sctp_write_space(struct sctp_association *asoc)
7279{
7280 struct sock *sk = asoc->base.sk;
7281
7282 if (sctp_wspace(asoc) <= 0)
7283 return;
7284
7285 if (waitqueue_active(&asoc->wait))
7286 wake_up_interruptible(&asoc->wait)__wake_up(&asoc->wait, 1, 1, ((void *)0));
7287
7288 if (sctp_writeable(sk)) {
7289 struct socket_wq *wq;
7290
7291 rcu_read_lock();
7292 wq = rcu_dereference(sk->sk_wq)({ typeof(*(sk->sk_wq)) *________p1 = (typeof(*(sk->sk_wq
)) *)({ typeof((sk->sk_wq)) _________p1 = ({ union { typeof
((sk->sk_wq)) __val; char __c[1]; } __u; if (1) __read_once_size
(&((sk->sk_wq)), __u.__c, sizeof((sk->sk_wq))); else
__read_once_size_nocheck(&((sk->sk_wq)), __u.__c, sizeof
((sk->sk_wq))); __u.__val; }); typeof(*((sk->sk_wq))) *
___typecheck_p __attribute__((unused)); do { } while (0); (_________p1
); }); do { static bool __attribute__ ((__section__(".data.unlikely"
))) __warned; if (debug_lockdep_rcu_enabled() && !__warned
&& (!((0) || rcu_read_lock_held()))) { __warned = true
; lockdep_rcu_suspicious("net/sctp/socket.c", 7292, "suspicious rcu_dereference_check() usage"
); } } while (0); ; ((typeof(*(sk->sk_wq)) *)(________p1))
; })
;
7293 if (wq) {
7294 if (waitqueue_active(&wq->wait))
7295 wake_up_interruptible(&wq->wait)__wake_up(&wq->wait, 1, 1, ((void *)0));
7296
7297 /* Note that we try to include the Async I/O support
7298 * here by modeling from the current TCP/UDP code.
7299 * We have not tested with it yet.
7300 */
7301 if (!(sk->sk_shutdown & SEND_SHUTDOWN2))
7302 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT((2 << 16)|2));
7303 }
7304 rcu_read_unlock();
7305 }
7306}
7307
7308static void sctp_wake_up_waiters(struct sock *sk,
7309 struct sctp_association *asoc)
7310{
7311 struct sctp_association *tmp = asoc;
7312
7313 /* We do accounting for the sndbuf space per association,
7314 * so we only need to wake our own association.
7315 */
7316 if (asoc->ep->sndbuf_policy)
7317 return __sctp_write_space(asoc);
7318
7319 /* If association goes down and is just flushing its
7320 * outq, then just normally notify others.
7321 */
7322 if (asoc->base.dead)
7323 return sctp_write_space(sk);
7324
7325 /* Accounting for the sndbuf space is per socket, so we
7326 * need to wake up others, try to be fair and in case of
7327 * other associations, let them have a go first instead
7328 * of just doing a sctp_write_space() call.
7329 *
7330 * Note that we reach sctp_wake_up_waiters() only when
7331 * associations free up queued chunks, thus we are under
7332 * lock and the list of associations on a socket is
7333 * guaranteed not to change.
7334 */
7335 for (tmp = list_next_entry(tmp, asocs)({ const typeof( ((typeof(*(tmp)) *)0)->asocs ) *__mptr = (
(tmp)->asocs.next); (typeof(*(tmp)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(tmp)), asocs) );})
; 1;
7336 tmp = list_next_entry(tmp, asocs)({ const typeof( ((typeof(*(tmp)) *)0)->asocs ) *__mptr = (
(tmp)->asocs.next); (typeof(*(tmp)) *)( (char *)__mptr - __builtin_offsetof
(typeof(*(tmp)), asocs) );})
) {
7337 /* Manually skip the head element. */
7338 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
7339 continue;
7340 /* Wake up association. */
7341 __sctp_write_space(tmp);
7342 /* We've reached the end. */
7343 if (tmp == asoc)
7344 break;
7345 }
7346}
7347
7348/* Do accounting for the sndbuf space.
7349 * Decrement the used sndbuf space of the corresponding association by the
7350 * data size which was just transmitted(freed).
7351 */
7352static void sctp_wfree(struct sk_buff *skb)
7353{
7354 struct sctp_chunk *chunk = skb_shinfo(skb)((struct skb_shared_info *)(skb_end_pointer(skb)))->destructor_arg;
7355 struct sctp_association *asoc = chunk->asoc;
7356 struct sock *sk = asoc->base.sk;
7357
7358 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk)((int)((unsigned long)(chunk->chunk_end) - (unsigned long)
(chunk->chunk_hdr) - sizeof(sctp_data_chunk_t)))
+
7359 sizeof(struct sk_buff) +
7360 sizeof(struct sctp_chunk);
7361
7362 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
7363
7364 /*
7365 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
7366 */
7367 sk->sk_wmem_queued -= skb->truesize;
7368 sk_mem_uncharge(sk, skb->truesize);
7369
7370 sock_wfree(skb);
7371 sctp_wake_up_waiters(sk, asoc);
7372
7373 sctp_association_put(asoc);
7374}
7375
7376/* Do accounting for the receive space on the socket.
7377 * Accounting for the association is done in ulpevent.c
7378 * We set this as a destructor for the cloned data skbs so that
7379 * accounting is done at the correct time.
7380 */
7381void sctp_sock_rfree(struct sk_buff *skb)
7382{
7383 struct sock *sk = skb->sk;
7384 struct sctp_ulpevent *event = sctp_skb2event(skb);
7385
7386 atomic_sub(event->rmem_len, &sk->sk_rmem_allocsk_backlog.rmem_alloc);
7387
7388 /*
7389 * Mimic the behavior of sock_rfree
7390 */
7391 sk_mem_uncharge(sk, event->rmem_len);
7392}
7393
7394
7395/* Helper function to wait for space in the sndbuf. */
7396static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
7397 size_t msg_len)
7398{
7399 struct sock *sk = asoc->base.sk;
7400 int err = 0;
7401 long current_timeo = *timeo_p;
7402 DEFINE_WAIT(wait)wait_queue_t wait = { .private = get_current(), .func = autoremove_wake_function
, .task_list = { &((wait).task_list), &((wait).task_list
) }, }
;
7403
7404 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: asoc:%p, timeo:%ld, msg_len:%zu\n"
), .lineno = 7405, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, *timeo_p
, msg_len); } while (0)
7405 *timeo_p, msg_len)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: asoc:%p, timeo:%ld, msg_len:%zu\n"
), .lineno = 7405, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc, *timeo_p
, msg_len); } while (0)
;
7406
7407 /* Increment the association's refcnt. */
7408 sctp_association_hold(asoc);
7409
7410 /* Wait on the association specific sndbuf space. */
7411 for (;;) {
7412 prepare_to_wait_exclusive(&asoc->wait, &wait,
7413 TASK_INTERRUPTIBLE1);
7414 if (!*timeo_p)
7415 goto do_nonblock;
7416 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7417 asoc->base.dead)
7418 goto do_error;
7419 if (signal_pending(currentget_current()))
7420 goto do_interrupted;
7421 if (msg_len <= sctp_wspace(asoc))
7422 break;
7423
7424 /* Let another process have a go. Since we are going
7425 * to sleep anyway.
7426 */
7427 release_sock(sk);
7428 current_timeo = schedule_timeout(current_timeo);
7429 BUG_ON(sk != asoc->base.sk)do { if ((sk != asoc->base.sk)) do { asm volatile("1:\tud2\n"
".pushsection __bug_table,\"a\"\n" "2:\t.long 1b - 2b, %c0 - 2b\n"
"\t.word %c1, 0\n" "\t.org 2b+%c2\n" ".popsection" : : "i" (
"net/sctp/socket.c"), "i" (7429), "i" (sizeof(struct bug_entry
))); do { } while (1); } while (0); } while (0)
;
7430 lock_sock(sk);
7431
7432 *timeo_p = current_timeo;
7433 }
7434
7435out:
7436 finish_wait(&asoc->wait, &wait);
7437
7438 /* Release the association's refcnt. */
7439 sctp_association_put(asoc);
7440
7441 return err;
7442
7443do_error:
7444 err = -EPIPE32;
7445 goto out;
7446
7447do_interrupted:
7448 err = sock_intr_errno(*timeo_p);
7449 goto out;
7450
7451do_nonblock:
7452 err = -EAGAIN11;
7453 goto out;
7454}
7455
7456void sctp_data_ready(struct sock *sk)
7457{
7458 struct socket_wq *wq;
7459
7460 rcu_read_lock();
7461 wq = rcu_dereference(sk->sk_wq)({ typeof(*(sk->sk_wq)) *________p1 = (typeof(*(sk->sk_wq
)) *)({ typeof((sk->sk_wq)) _________p1 = ({ union { typeof
((sk->sk_wq)) __val; char __c[1]; } __u; if (1) __read_once_size
(&((sk->sk_wq)), __u.__c, sizeof((sk->sk_wq))); else
__read_once_size_nocheck(&((sk->sk_wq)), __u.__c, sizeof
((sk->sk_wq))); __u.__val; }); typeof(*((sk->sk_wq))) *
___typecheck_p __attribute__((unused)); do { } while (0); (_________p1
); }); do { static bool __attribute__ ((__section__(".data.unlikely"
))) __warned; if (debug_lockdep_rcu_enabled() && !__warned
&& (!((0) || rcu_read_lock_held()))) { __warned = true
; lockdep_rcu_suspicious("net/sctp/socket.c", 7461, "suspicious rcu_dereference_check() usage"
); } } while (0); ; ((typeof(*(sk->sk_wq)) *)(________p1))
; })
;
7462 if (skwq_has_sleeper(wq))
7463 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |__wake_up_sync_key((&wq->wait), 1, 1, (void *) (0x0001
| 0x0040 | 0x0080))
7464 POLLRDNORM | POLLRDBAND)__wake_up_sync_key((&wq->wait), 1, 1, (void *) (0x0001
| 0x0040 | 0x0080))
;
7465 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN((2 << 16)|1));
7466 rcu_read_unlock();
7467}
7468
7469/* If socket sndbuf has changed, wake up all per association waiters. */
7470void sctp_write_space(struct sock *sk)
7471{
7472 struct sctp_association *asoc;
7473
7474 /* Wake up the tasks in each wait queue. */
7475 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs)for (asoc = ({ const typeof( ((typeof(*asoc) *)0)->asocs )
*__mptr = ((&((sctp_sk(sk))->ep->asocs))->next)
; (typeof(*asoc) *)( (char *)__mptr - __builtin_offsetof(typeof
(*asoc), asocs) );}); &asoc->asocs != (&((sctp_sk(
sk))->ep->asocs)); asoc = ({ const typeof( ((typeof(*(asoc
)) *)0)->asocs ) *__mptr = ((asoc)->asocs.next); (typeof
(*(asoc)) *)( (char *)__mptr - __builtin_offsetof(typeof(*(asoc
)), asocs) );}))
{
7476 __sctp_write_space(asoc);
7477 }
7478}
7479
7480/* Is there any sndbuf space available on the socket?
7481 *
7482 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7483 * associations on the same socket. For a UDP-style socket with
7484 * multiple associations, it is possible for it to be "unwriteable"
7485 * prematurely. I assume that this is acceptable because
7486 * a premature "unwriteable" is better than an accidental "writeable" which
7487 * would cause an unwanted block under certain circumstances. For the 1-1
7488 * UDP-style sockets or TCP-style sockets, this code should work.
7489 * - Daisy
7490 */
7491static int sctp_writeable(struct sock *sk)
7492{
7493 int amt = 0;
7494
7495 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7496 if (amt < 0)
7497 amt = 0;
7498 return amt;
7499}
7500
7501/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7502 * returns immediately with EINPROGRESS.
7503 */
7504static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7505{
7506 struct sock *sk = asoc->base.sk;
7507 int err = 0;
7508 long current_timeo = *timeo_p;
7509 DEFINE_WAIT(wait)wait_queue_t wait = { .private = get_current(), .func = autoremove_wake_function
, .task_list = { &((wait).task_list), &((wait).task_list
) }, }
;
7510
7511 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p)do { static struct _ddebug __attribute__((aligned(8))) __attribute__
((section("__verbose"))) descriptor = { .modname = "sctp", .function
= __func__, .filename = "net/sctp/socket.c", .format = ("%s: asoc:%p, timeo:%ld\n"
), .lineno = 7511, .flags = 0, }; if ((descriptor.flags &
(1<<0))) __dynamic_pr_debug(&descriptor, "sctp" ": "
"%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p); } while
(0)
;
7512
7513 /* Increment the association's refcnt. */
7514 sctp_association_hold(asoc);
7515
7516 for (;;) {
7517 prepare_to_wait_exclusive(&asoc->wait, &wait,
7518 TASK_INTERRUPTIBLE1);
7519 if (!*timeo_p)
7520 goto do_nonblock;
7521 if (sk->sk_shutdown & RCV_SHUTDOWN1)
7522 break;
7523 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7524 asoc->base.dead)
7525 goto do_error;
7526 if (signal_pending(currentget_current()))
7527 goto do_interrupted;
7528
7529 if (sctp_state(asoc, ESTABLISHED)__sctp_state((asoc), (SCTP_STATE_ESTABLISHED)))
7530 break;
7531
7532 /* Let another process have a go. Since we are going
7533 * to sleep anyway.
7534 */
7535 release_sock(sk);
7536 current_timeo = schedule_timeout(current_timeo);
7537 lock_sock(sk);
7538
7539 *timeo_p = current_timeo;
7540 }
7541
7542out:
7543 finish_wait(&asoc->wait, &wait);
7544
7545 /* Release the association's refcnt. */
7546 sctp_association_put(asoc);
7547
7548 return err;
7549
7550do_error:
7551 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7552 err = -ETIMEDOUT110;
7553 else
7554 err = -ECONNREFUSED111;
7555 goto out;
7556
7557do_interrupted:
7558 err = sock_intr_errno(*timeo_p);
7559 goto out;
7560
7561do_nonblock:
7562 err = -EINPROGRESS115;
7563 goto out;
7564}
7565
7566static int sctp_wait_for_accept(struct sock *sk, long timeo)
7567{
7568 struct sctp_endpoint *ep;
7569 int err = 0;
7570 DEFINE_WAIT(wait)wait_queue_t wait = { .private = get_current(), .func = autoremove_wake_function
, .task_list = { &((wait).task_list), &((wait).task_list
) }, }
;
7571
7572 ep = sctp_sk(sk)->ep;
7573
7574
7575 for (;;) {
7576 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7577 TASK_INTERRUPTIBLE1);
7578
7579 if (list_empty(&ep->asocs)) {
7580 release_sock(sk);
7581 timeo = schedule_timeout(timeo);
7582 lock_sock(sk);
7583 }
7584
7585 err = -EINVAL22;
7586 if (!sctp_sstate(sk, LISTENING)__sctp_sstate((sk), (SCTP_SS_LISTENING)))
7587 break;
7588
7589 err = 0;
7590 if (!list_empty(&ep->asocs))
7591 break;
7592
7593 err = sock_intr_errno(timeo);
7594 if (signal_pending(currentget_current()))
7595 break;
7596
7597 err = -EAGAIN11;
7598 if (!timeo)
7599 break;
7600 }
7601
7602 finish_wait(sk_sleep(sk), &wait);
7603
7604 return err;
7605}
7606
7607static void sctp_wait_for_close(struct sock *sk, long timeout)
7608{
7609 DEFINE_WAIT(wait)wait_queue_t wait = { .private = get_current(), .func = autoremove_wake_function
, .task_list = { &((wait).task_list), &((wait).task_list
) }, }
;
7610
7611 do {
7612 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE1);
7613 if (list_empty(&sctp_sk(sk)->ep->asocs))
7614 break;
7615 release_sock(sk);
7616 timeout = schedule_timeout(timeout);
7617 lock_sock(sk);
7618 } while (!signal_pending(currentget_current()) && timeout);
7619
7620 finish_wait(sk_sleep(sk), &wait);
7621}
7622
7623static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7624{
7625 struct sk_buff *frag;
7626
7627 if (!skb->data_len)
7628 goto done;
7629
7630 /* Don't forget the fragments. */
7631 skb_walk_frags(skb, frag)for (frag = ((struct skb_shared_info *)(skb_end_pointer(skb))
)->frag_list; frag; frag = frag->next)
7632 sctp_skb_set_owner_r_frag(frag, sk);
7633
7634done:
7635 sctp_skb_set_owner_r(skb, sk);
7636}
7637
7638void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7639 struct sctp_association *asoc)
7640{
7641 struct inet_sock *inet = inet_sk(sk);
7642 struct inet_sock *newinet;
7643
7644 newsk->sk_type = sk->sk_type;
7645 newsk->sk_bound_dev_if__sk_common.skc_bound_dev_if = sk->sk_bound_dev_if__sk_common.skc_bound_dev_if;
7646 newsk->sk_flags__sk_common.skc_flags = sk->sk_flags__sk_common.skc_flags;
7647 newsk->sk_tsflags = sk->sk_tsflags;
7648 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7649 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7650 newsk->sk_reuse__sk_common.skc_reuse = sk->sk_reuse__sk_common.skc_reuse;
7651
7652 newsk->sk_shutdown = sk->sk_shutdown;
7653 newsk->sk_destruct = sctp_destruct_sock;
7654 newsk->sk_family__sk_common.skc_family = sk->sk_family__sk_common.skc_family;
7655 newsk->sk_protocol = IPPROTO_SCTPIPPROTO_SCTP;
7656 newsk->sk_backlog_rcv = sk->sk_prot__sk_common.skc_prot->backlog_rcv;
7657 newsk->sk_sndbuf = sk->sk_sndbuf;
7658 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7659 newsk->sk_lingertime = sk->sk_lingertime;
7660 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7661 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7662 newsk->sk_rxhash__sk_common.skc_rxhash = sk->sk_rxhash__sk_common.skc_rxhash;
7663
7664 newinet = inet_sk(newsk);
7665
7666 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7667 * getsockname() and getpeername()
7668 */
7669 newinet->inet_sport = inet->inet_sport;
7670 newinet->inet_saddr = inet->inet_saddr;
7671 newinet->inet_rcv_saddrsk.__sk_common.skc_rcv_saddr = inet->inet_rcv_saddrsk.__sk_common.skc_rcv_saddr;
7672 newinet->inet_dportsk.__sk_common.skc_dport = htons(asoc->peer.port)(( __be16)(__builtin_constant_p((__u16)((asoc->peer.port))
) ? ((__u16)( (((__u16)((asoc->peer.port)) & (__u16)0x00ffU
) << 8) | (((__u16)((asoc->peer.port)) & (__u16)
0xff00U) >> 8))) : __fswab16((asoc->peer.port))))
;
7673 newinet->pmtudisc = inet->pmtudisc;
7674 newinet->inet_id = asoc->next_tsn ^ jiffies;
7675
7676 newinet->uc_ttl = inet->uc_ttl;
7677 newinet->mc_loop = 1;
7678 newinet->mc_ttl = 1;
7679 newinet->mc_index = 0;
7680 newinet->mc_list = NULL((void *)0);
7681
7682 if (newsk->sk_flags__sk_common.skc_flags & SK_FLAGS_TIMESTAMP((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
))
)
7683 net_enable_timestamp();
7684
7685 security_sk_clone(sk, newsk);
7686}
7687
7688static inlineinline __attribute__((no_instrument_function)) void sctp_copy_descendant(struct sock *sk_to,
7689 const struct sock *sk_from)
7690{
7691 int ancestor_size = sizeof(struct inet_sock) +
7692 sizeof(struct sctp_sock) -
7693 offsetof(struct sctp_sock, auto_asconf_list)__builtin_offsetof(struct sctp_sock, auto_asconf_list);
7694
7695 if (sk_from->sk_family__sk_common.skc_family == PF_INET610)
7696 ancestor_size += sizeof(struct ipv6_pinfo);
7697
7698 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7699}
7700
7701/* Populate the fields of the newsk from the oldsk and migrate the assoc
7702 * and its messages to the newsk.
7703 */
7704static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7705 struct sctp_association *assoc,
7706 sctp_socket_type_t type)
7707{
7708 struct sctp_sock *oldsp = sctp_sk(oldsk);
7709 struct sctp_sock *newsp = sctp_sk(newsk);
7710 struct sctp_bind_bucket *pp; /* hash list port iterator */
7711 struct sctp_endpoint *newep = newsp->ep;
7712 struct sk_buff *skb, *tmp;
7713 struct sctp_ulpevent *event;
7714 struct sctp_bind_hashbucket *head;
7715
7716 /* Migrate socket buffer sizes and all the socket level options to the
7717 * new socket.
7718 */
7719 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7720 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7721 /* Brute force copy old sctp opt. */
7722 sctp_copy_descendant(newsk, oldsk);
7723
7724 /* Restore the ep value that was overwritten with the above structure
7725 * copy.
7726 */
7727 newsp->ep = newep;
7728 newsp->hmac = NULL((void *)0);
7729
7730 /* Hook this new socket in to the bind_hash list. */
7731 head = &sctp_port_hashtable(sctp_globals.port_hashtable)[sctp_phashfn(sock_net(oldsk),
7732 inet_sk(oldsk)->inet_numsk.__sk_common.skc_num)];
7733 spin_lock_bh(&head->lock);
7734 pp = sctp_sk(oldsk)->bind_hash;
7735 sk_add_bind_node(newsk, &pp->owner);
7736 sctp_sk(newsk)->bind_hash = pp;
7737 inet_sk(newsk)->inet_numsk.__sk_common.skc_num = inet_sk(oldsk)->inet_numsk.__sk_common.skc_num;
7738 spin_unlock_bh(&head->lock);
7739
7740 /* Copy the bind_addr list from the original endpoint to the new
7741 * endpoint so that we can handle restarts properly
7742 */
7743 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7744 &oldsp->ep->base.bind_addr, GFP_KERNEL((( gfp_t)(0x400000u|0x2000000u)) | (( gfp_t)0x40u) | (( gfp_t
)0x80u))
);
7745
7746 /* Move any messages in the old socket's receive queue that are for the
7747 * peeled off association to the new socket's receive queue.
7748 */
7749 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp)for (skb = (&oldsk->sk_receive_queue)->next, tmp = skb
->next; skb != (struct sk_buff *)(&oldsk->sk_receive_queue
); skb = tmp, tmp = skb->next)
{
7750 event = sctp_skb2event(skb);
7751 if (event->asoc == assoc) {
7752 __skb_unlink(skb, &oldsk->sk_receive_queue);
7753 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7754 sctp_skb_set_owner_r_frag(skb, newsk);
7755 }
7756 }
7757
7758 /* Clean up any messages pending delivery due to partial
7759 * delivery. Three cases:
7760 * 1) No partial deliver; no work.
7761 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7762 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7763 */
7764 skb_queue_head_init(&newsp->pd_lobby);
7765 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7766
7767 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7768 struct sk_buff_head *queue;
7769
7770 /* Decide which queue to move pd_lobby skbs to. */
7771 if (assoc->ulpq.pd_mode) {
7772 queue = &newsp->pd_lobby;
7773 } else
7774 queue = &newsk->sk_receive_queue;
7775
7776 /* Walk through the pd_lobby, looking for skbs that
7777 * need moved to the new socket.
7778 */
7779 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp)for (skb = (&oldsp->pd_lobby)->next, tmp = skb->
next; skb != (struct sk_buff *)(&oldsp->pd_lobby); skb
= tmp, tmp = skb->next)
{
7780 event = sctp_skb2event(skb);
7781 if (event->asoc == assoc) {
7782 __skb_unlink(skb, &oldsp->pd_lobby);
7783 __skb_queue_tail(queue, skb);
7784 sctp_skb_set_owner_r_frag(skb, newsk);
7785 }
7786 }
7787
7788 /* Clear up any skbs waiting for the partial
7789 * delivery to finish.
7790 */
7791 if (assoc->ulpq.pd_mode)
7792 sctp_clear_pd(oldsk, NULL((void *)0));
7793
7794 }
7795
7796 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)for (skb = (&assoc->ulpq.reasm)->next, tmp = skb->
next; skb != (struct sk_buff *)(&assoc->ulpq.reasm); skb
= tmp, tmp = skb->next)
7797 sctp_skb_set_owner_r_frag(skb, newsk);
7798
7799 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)for (skb = (&assoc->ulpq.lobby)->next, tmp = skb->
next; skb != (struct sk_buff *)(&assoc->ulpq.lobby); skb
= tmp, tmp = skb->next)
7800 sctp_skb_set_owner_r_frag(skb, newsk);
7801
7802 /* Set the type of socket to indicate that it is peeled off from the
7803 * original UDP-style socket or created with the accept() call on a
7804 * TCP-style socket..
7805 */
7806 newsp->type = type;
7807
7808 /* Mark the new socket "in-use" by the user so that any packets
7809 * that may arrive on the association after we've moved it are
7810 * queued to the backlog. This prevents a potential race between
7811 * backlog processing on the old socket and new-packet processing
7812 * on the new socket.
7813 *
7814 * The caller has just allocated newsk so we can guarantee that other
7815 * paths won't try to lock it and then oldsk.
7816 */
7817 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING1);
7818 sctp_assoc_migrate(assoc, newsk);
7819
7820 /* If the association on the newsk is already closed before accept()
7821 * is called, set RCV_SHUTDOWN flag.
7822 */
7823 if (sctp_state(assoc, CLOSED)__sctp_state((assoc), (SCTP_STATE_CLOSED)) && sctp_style(newsk, TCP)__sctp_style((newsk), (SCTP_SOCKET_TCP))) {
7824 newsk->sk_state__sk_common.skc_state = SCTP_SS_CLOSED;
7825 newsk->sk_shutdown |= RCV_SHUTDOWN1;
7826 } else {
7827 newsk->sk_state__sk_common.skc_state = SCTP_SS_ESTABLISHED;
7828 }
7829
7830 release_sock(newsk);
7831}
7832
7833
7834/* This proto struct describes the ULP interface for SCTP. */
7835struct proto sctp_prot = {
7836 .name = "SCTP",
7837 .owner = THIS_MODULE((struct module *)0),
7838 .close = sctp_close,
7839 .connect = sctp_connect,
7840 .disconnect = sctp_disconnect,
7841 .accept = sctp_accept,
7842 .ioctl = sctp_ioctl,
7843 .init = sctp_init_sock,
7844 .destroy = sctp_destroy_sock,
7845 .shutdown = sctp_shutdown,
7846 .setsockopt = sctp_setsockopt,
7847 .getsockopt = sctp_getsockopt,
7848 .sendmsg = sctp_sendmsg,
7849 .recvmsg = sctp_recvmsg,
7850 .bind = sctp_bind,
7851 .backlog_rcv = sctp_backlog_rcv,
7852 .hash = sctp_hash,
7853 .unhash = sctp_unhash,
7854 .get_port = sctp_get_port,
7855 .obj_size = sizeof(struct sctp_sock),
7856 .sysctl_mem = sysctl_sctp_mem,
7857 .sysctl_rmem = sysctl_sctp_rmem,
7858 .sysctl_wmem = sysctl_sctp_wmem,
7859 .memory_pressure = &sctp_memory_pressure,
7860 .enter_memory_pressure = sctp_enter_memory_pressure,
7861 .memory_allocated = &sctp_memory_allocated,
7862 .sockets_allocated = &sctp_sockets_allocated,
7863};
7864
7865#if IS_ENABLED(CONFIG_IPV6)1
7866
7867#include <net/transp_v6.h>
7868static void sctp_v6_destroy_sock(struct sock *sk)
7869{
7870 sctp_destroy_sock(sk);
7871 inet6_destroy_sock(sk);
7872}
7873
7874struct proto sctpv6_prot = {
7875 .name = "SCTPv6",
7876 .owner = THIS_MODULE((struct module *)0),
7877 .close = sctp_close,
7878 .connect = sctp_connect,
7879 .disconnect = sctp_disconnect,
7880 .accept = sctp_accept,
7881 .ioctl = sctp_ioctl,
7882 .init = sctp_init_sock,
7883 .destroy = sctp_v6_destroy_sock,
7884 .shutdown = sctp_shutdown,
7885 .setsockopt = sctp_setsockopt,
7886 .getsockopt = sctp_getsockopt,
7887 .sendmsg = sctp_sendmsg,
7888 .recvmsg = sctp_recvmsg,
7889 .bind = sctp_bind,
7890 .backlog_rcv = sctp_backlog_rcv,
7891 .hash = sctp_hash,
7892 .unhash = sctp_unhash,
7893 .get_port = sctp_get_port,
7894 .obj_size = sizeof(struct sctp6_sock),
7895 .sysctl_mem = sysctl_sctp_mem,
7896 .sysctl_rmem = sysctl_sctp_rmem,
7897 .sysctl_wmem = sysctl_sctp_wmem,
7898 .memory_pressure = &sctp_memory_pressure,
7899 .enter_memory_pressure = sctp_enter_memory_pressure,
7900 .memory_allocated = &sctp_memory_allocated,
7901 .sockets_allocated = &sctp_sockets_allocated,
7902};
7903#endif /* IS_ENABLED(CONFIG_IPV6) */