| File: | bsd/kern/kern_time.c |
| Warning: | line 264, column 12 Copies out a struct with uncleared padding (>= 4 bytes) |
| 1 | /* | |||
| 2 | * Copyright (c) 2000-2008 Apple Inc. All rights reserved. | |||
| 3 | * | |||
| 4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |||
| 5 | * | |||
| 6 | * This file contains Original Code and/or Modifications of Original Code | |||
| 7 | * as defined in and that are subject to the Apple Public Source License | |||
| 8 | * Version 2.0 (the 'License'). You may not use this file except in | |||
| 9 | * compliance with the License. The rights granted to you under the License | |||
| 10 | * may not be used to create, or enable the creation or redistribution of, | |||
| 11 | * unlawful or unlicensed copies of an Apple operating system, or to | |||
| 12 | * circumvent, violate, or enable the circumvention or violation of, any | |||
| 13 | * terms of an Apple operating system software license agreement. | |||
| 14 | * | |||
| 15 | * Please obtain a copy of the License at | |||
| 16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |||
| 17 | * | |||
| 18 | * The Original Code and all software distributed under the License are | |||
| 19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |||
| 20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |||
| 21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |||
| 22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |||
| 23 | * Please see the License for the specific language governing rights and | |||
| 24 | * limitations under the License. | |||
| 25 | * | |||
| 26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |||
| 27 | */ | |||
| 28 | /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */ | |||
| 29 | /* | |||
| 30 | * Copyright (c) 1982, 1986, 1989, 1993 | |||
| 31 | * The Regents of the University of California. All rights reserved. | |||
| 32 | * | |||
| 33 | * Redistribution and use in source and binary forms, with or without | |||
| 34 | * modification, are permitted provided that the following conditions | |||
| 35 | * are met: | |||
| 36 | * 1. Redistributions of source code must retain the above copyright | |||
| 37 | * notice, this list of conditions and the following disclaimer. | |||
| 38 | * 2. Redistributions in binary form must reproduce the above copyright | |||
| 39 | * notice, this list of conditions and the following disclaimer in the | |||
| 40 | * documentation and/or other materials provided with the distribution. | |||
| 41 | * 3. All advertising materials mentioning features or use of this software | |||
| 42 | * must display the following acknowledgement: | |||
| 43 | * This product includes software developed by the University of | |||
| 44 | * California, Berkeley and its contributors. | |||
| 45 | * 4. Neither the name of the University nor the names of its contributors | |||
| 46 | * may be used to endorse or promote products derived from this software | |||
| 47 | * without specific prior written permission. | |||
| 48 | * | |||
| 49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |||
| 50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||
| 51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
| 52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |||
| 53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |||
| 54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |||
| 55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |||
| 56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |||
| 57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |||
| 58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |||
| 59 | * SUCH DAMAGE. | |||
| 60 | * | |||
| 61 | * @(#)kern_time.c 8.4 (Berkeley) 5/26/95 | |||
| 62 | */ | |||
| 63 | /* | |||
| 64 | * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce | |||
| 65 | * support for mandatory and extensible security protections. This notice | |||
| 66 | * is included in support of clause 2.2 (b) of the Apple Public License, | |||
| 67 | * Version 2.0. | |||
| 68 | */ | |||
| 69 | ||||
| 70 | #include <sys/param.h> | |||
| 71 | #include <sys/resourcevar.h> | |||
| 72 | #include <sys/kernel.h> | |||
| 73 | #include <sys/systm.h> | |||
| 74 | #include <sys/proc_internal.h> | |||
| 75 | #include <sys/kauth.h> | |||
| 76 | #include <sys/vnode.h> | |||
| 77 | #include <sys/time.h> | |||
| 78 | #include <sys/priv.h> | |||
| 79 | ||||
| 80 | #include <sys/mount_internal.h> | |||
| 81 | #include <sys/sysproto.h> | |||
| 82 | #include <sys/signalvar.h> | |||
| 83 | #include <sys/protosw.h> /* for net_uptime2timeval() */ | |||
| 84 | ||||
| 85 | #include <kern/clock.h> | |||
| 86 | #include <kern/task.h> | |||
| 87 | #include <kern/thread_call.h> | |||
| 88 | #if CONFIG_MACF1 | |||
| 89 | #include <security/mac_framework.h> | |||
| 90 | #endif | |||
| 91 | ||||
| 92 | #define HZ100 100 /* XXX */ | |||
| 93 | ||||
| 94 | /* simple lock used to access timezone, tz structure */ | |||
| 95 | lck_spin_t * tz_slock; | |||
| 96 | lck_grp_t * tz_slock_grp; | |||
| 97 | lck_attr_t * tz_slock_attr; | |||
| 98 | lck_grp_attr_t *tz_slock_grp_attr; | |||
| 99 | ||||
| 100 | static void setthetime( | |||
| 101 | struct timeval *tv); | |||
| 102 | ||||
| 103 | void time_zone_slock_init(void); | |||
| 104 | ||||
| 105 | /* | |||
| 106 | * Time of day and interval timer support. | |||
| 107 | * | |||
| 108 | * These routines provide the kernel entry points to get and set | |||
| 109 | * the time-of-day and per-process interval timers. Subroutines | |||
| 110 | * here provide support for adding and subtracting timeval structures | |||
| 111 | * and decrementing interval timers, optionally reloading the interval | |||
| 112 | * timers when they expire. | |||
| 113 | */ | |||
| 114 | /* ARGSUSED */ | |||
| 115 | int | |||
| 116 | gettimeofday( | |||
| 117 | struct proc *p, | |||
| 118 | struct gettimeofday_args *uap, | |||
| 119 | __unused__attribute__((unused)) int32_t *retval) | |||
| 120 | { | |||
| 121 | int error = 0; | |||
| 122 | struct timezone ltz; /* local copy */ | |||
| 123 | clock_sec_t secs; | |||
| 124 | clock_usec_t usecs; | |||
| 125 | uint64_t mach_time; | |||
| 126 | ||||
| 127 | if (uap->tp || uap->mach_absolute_time) { | |||
| 128 | clock_gettimeofday_and_absolute_time(&secs, &usecs, &mach_time); | |||
| 129 | } | |||
| 130 | ||||
| 131 | if (uap->tp) { | |||
| 132 | /* Casting secs through a uint32_t to match arm64 commpage */ | |||
| 133 | if (IS_64BIT_PROCESS(p)) { | |||
| 134 | struct user64_timeval user_atv = {}; | |||
| 135 | user_atv.tv_sec = (uint32_t)secs; | |||
| 136 | user_atv.tv_usec = usecs; | |||
| 137 | error = copyout(&user_atv, uap->tp, sizeof(user_atv)); | |||
| 138 | } else { | |||
| 139 | struct user32_timeval user_atv = {}; | |||
| 140 | user_atv.tv_sec = (uint32_t)secs; | |||
| 141 | user_atv.tv_usec = usecs; | |||
| 142 | error = copyout(&user_atv, uap->tp, sizeof(user_atv)); | |||
| 143 | } | |||
| 144 | if (error) { | |||
| 145 | return error; | |||
| 146 | } | |||
| 147 | } | |||
| 148 | ||||
| 149 | if (uap->tzp) { | |||
| 150 | lck_spin_lock(tz_slock); | |||
| 151 | ltz = tz; | |||
| 152 | lck_spin_unlock(tz_slock); | |||
| 153 | ||||
| 154 | error = copyout((caddr_t)<z, CAST_USER_ADDR_T(uap->tzp)((user_addr_t)((uintptr_t)(uap->tzp))), sizeof(tz)); | |||
| 155 | } | |||
| 156 | ||||
| 157 | if (error == 0 && uap->mach_absolute_time) { | |||
| 158 | error = copyout(&mach_time, uap->mach_absolute_time, sizeof(mach_time)); | |||
| 159 | } | |||
| 160 | ||||
| 161 | return error; | |||
| 162 | } | |||
| 163 | ||||
| 164 | /* | |||
| 165 | * XXX Y2038 bug because of setthetime() argument | |||
| 166 | */ | |||
| 167 | /* ARGSUSED */ | |||
| 168 | int | |||
| 169 | settimeofday(__unused__attribute__((unused)) struct proc *p, struct settimeofday_args *uap, __unused__attribute__((unused)) int32_t *retval) | |||
| 170 | { | |||
| 171 | struct timeval atv; | |||
| 172 | struct timezone atz; | |||
| 173 | int error; | |||
| 174 | ||||
| 175 | bzero(&atv, sizeof(atv)); | |||
| 176 | ||||
| 177 | #if CONFIG_MACF1 | |||
| 178 | error = mac_system_check_settime(kauth_cred_get()); | |||
| 179 | if (error) | |||
| 180 | return (error); | |||
| 181 | #endif | |||
| 182 | if ((error = suser(kauth_cred_get(), &p->p_acflag))) | |||
| 183 | return (error); | |||
| 184 | /* Verify all parameters before changing time */ | |||
| 185 | if (uap->tv) { | |||
| 186 | if (IS_64BIT_PROCESS(p)) { | |||
| 187 | struct user64_timeval user_atv; | |||
| 188 | error = copyin(uap->tv, &user_atv, sizeof(user_atv)); | |||
| 189 | atv.tv_sec = user_atv.tv_sec; | |||
| 190 | atv.tv_usec = user_atv.tv_usec; | |||
| 191 | } else { | |||
| 192 | struct user32_timeval user_atv; | |||
| 193 | error = copyin(uap->tv, &user_atv, sizeof(user_atv)); | |||
| 194 | atv.tv_sec = user_atv.tv_sec; | |||
| 195 | atv.tv_usec = user_atv.tv_usec; | |||
| 196 | } | |||
| 197 | if (error) | |||
| 198 | return (error); | |||
| 199 | } | |||
| 200 | if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz)))) | |||
| 201 | return (error); | |||
| 202 | if (uap->tv) { | |||
| 203 | timevalfix(&atv); | |||
| 204 | if (atv.tv_sec < 0 || (atv.tv_sec == 0 && atv.tv_usec < 0)) | |||
| 205 | return (EPERM1); | |||
| 206 | setthetime(&atv); | |||
| 207 | } | |||
| 208 | if (uap->tzp) { | |||
| 209 | lck_spin_lock(tz_slock); | |||
| 210 | tz = atz; | |||
| 211 | lck_spin_unlock(tz_slock); | |||
| 212 | } | |||
| 213 | return (0); | |||
| 214 | } | |||
| 215 | ||||
| 216 | static void | |||
| 217 | setthetime( | |||
| 218 | struct timeval *tv) | |||
| 219 | { | |||
| 220 | clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec); | |||
| 221 | } | |||
| 222 | ||||
| 223 | /* | |||
| 224 | * XXX Y2038 bug because of clock_adjtime() first argument | |||
| 225 | */ | |||
| 226 | /* ARGSUSED */ | |||
| 227 | int | |||
| 228 | adjtime(struct proc *p, struct adjtime_args *uap, __unused__attribute__((unused)) int32_t *retval) | |||
| 229 | { | |||
| 230 | struct timeval atv; | |||
| 231 | int error; | |||
| 232 | ||||
| 233 | #if CONFIG_MACF1 | |||
| 234 | error = mac_system_check_settime(kauth_cred_get()); | |||
| 235 | if (error) | |||
| ||||
| 236 | return (error); | |||
| 237 | #endif | |||
| 238 | if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME1000, 0))) | |||
| 239 | return (error); | |||
| 240 | if (IS_64BIT_PROCESS(p)) { | |||
| 241 | struct user64_timeval user_atv; | |||
| 242 | error = copyin(uap->delta, &user_atv, sizeof(user_atv)); | |||
| 243 | atv.tv_sec = user_atv.tv_sec; | |||
| 244 | atv.tv_usec = user_atv.tv_usec; | |||
| 245 | } else { | |||
| 246 | struct user32_timeval user_atv; | |||
| 247 | error = copyin(uap->delta, &user_atv, sizeof(user_atv)); | |||
| 248 | atv.tv_sec = user_atv.tv_sec; | |||
| 249 | atv.tv_usec = user_atv.tv_usec; | |||
| 250 | } | |||
| 251 | if (error) | |||
| 252 | return (error); | |||
| 253 | ||||
| 254 | /* | |||
| 255 | * Compute the total correction and the rate at which to apply it. | |||
| 256 | */ | |||
| 257 | clock_adjtime(&atv.tv_sec, &atv.tv_usec); | |||
| 258 | ||||
| 259 | if (uap->olddelta) { | |||
| 260 | if (IS_64BIT_PROCESS(p)) { | |||
| 261 | struct user64_timeval user_atv; | |||
| 262 | user_atv.tv_sec = atv.tv_sec; | |||
| 263 | user_atv.tv_usec = atv.tv_usec; | |||
| 264 | error = copyout(&user_atv, uap->olddelta, sizeof(user_atv)); | |||
| ||||
| 265 | } else { | |||
| 266 | struct user32_timeval user_atv; | |||
| 267 | user_atv.tv_sec = atv.tv_sec; | |||
| 268 | user_atv.tv_usec = atv.tv_usec; | |||
| 269 | error = copyout(&user_atv, uap->olddelta, sizeof(user_atv)); | |||
| 270 | } | |||
| 271 | } | |||
| 272 | ||||
| 273 | return (0); | |||
| 274 | } | |||
| 275 | ||||
| 276 | /* | |||
| 277 | * Verify the calendar value. If negative, | |||
| 278 | * reset to zero (the epoch). | |||
| 279 | */ | |||
| 280 | void | |||
| 281 | inittodr( | |||
| 282 | __unused__attribute__((unused)) time_t base) | |||
| 283 | { | |||
| 284 | struct timeval tv; | |||
| 285 | ||||
| 286 | /* | |||
| 287 | * Assertion: | |||
| 288 | * The calendar has already been | |||
| 289 | * set up from the platform clock. | |||
| 290 | * | |||
| 291 | * The value returned by microtime() | |||
| 292 | * is gotten from the calendar. | |||
| 293 | */ | |||
| 294 | microtime(&tv); | |||
| 295 | ||||
| 296 | if (tv.tv_sec < 0 || tv.tv_usec < 0) { | |||
| 297 | printf ("WARNING: preposterous time in Real Time Clock"); | |||
| 298 | tv.tv_sec = 0; /* the UNIX epoch */ | |||
| 299 | tv.tv_usec = 0; | |||
| 300 | setthetime(&tv); | |||
| 301 | printf(" -- CHECK AND RESET THE DATE!\n"); | |||
| 302 | } | |||
| 303 | } | |||
| 304 | ||||
| 305 | time_t | |||
| 306 | boottime_sec(void) | |||
| 307 | { | |||
| 308 | clock_sec_t secs; | |||
| 309 | clock_nsec_t nanosecs; | |||
| 310 | ||||
| 311 | clock_get_boottime_nanotime(&secs, &nanosecs); | |||
| 312 | return (secs); | |||
| 313 | } | |||
| 314 | ||||
| 315 | void | |||
| 316 | boottime_timeval(struct timeval *tv) | |||
| 317 | { | |||
| 318 | clock_sec_t secs; | |||
| 319 | clock_usec_t microsecs; | |||
| 320 | ||||
| 321 | clock_get_boottime_microtime(&secs, µsecs); | |||
| 322 | ||||
| 323 | tv->tv_sec = secs; | |||
| 324 | tv->tv_usec = microsecs; | |||
| 325 | } | |||
| 326 | ||||
| 327 | /* | |||
| 328 | * Get value of an interval timer. The process virtual and | |||
| 329 | * profiling virtual time timers are kept internally in the | |||
| 330 | * way they are specified externally: in time until they expire. | |||
| 331 | * | |||
| 332 | * The real time interval timer expiration time (p_rtime) | |||
| 333 | * is kept as an absolute time rather than as a delta, so that | |||
| 334 | * it is easy to keep periodic real-time signals from drifting. | |||
| 335 | * | |||
| 336 | * The real time timer is processed by a callout routine. | |||
| 337 | * Since a callout may be delayed in real time due to | |||
| 338 | * other processing in the system, it is possible for the real | |||
| 339 | * time callout routine (realitexpire, given below), to be delayed | |||
| 340 | * in real time past when it is supposed to occur. It does not | |||
| 341 | * suffice, therefore, to reload the real time .it_value from the | |||
| 342 | * real time .it_interval. Rather, we compute the next time in | |||
| 343 | * absolute time when the timer should go off. | |||
| 344 | * | |||
| 345 | * Returns: 0 Success | |||
| 346 | * EINVAL Invalid argument | |||
| 347 | * copyout:EFAULT Bad address | |||
| 348 | */ | |||
| 349 | /* ARGSUSED */ | |||
| 350 | int | |||
| 351 | getitimer(struct proc *p, struct getitimer_args *uap, __unused__attribute__((unused)) int32_t *retval) | |||
| 352 | { | |||
| 353 | struct itimerval aitv; | |||
| 354 | ||||
| 355 | if (uap->which > ITIMER_PROF2) | |||
| 356 | return(EINVAL22); | |||
| 357 | ||||
| 358 | bzero(&aitv, sizeof(aitv)); | |||
| 359 | ||||
| 360 | proc_spinlock(p); | |||
| 361 | switch (uap->which) { | |||
| 362 | ||||
| 363 | case ITIMER_REAL0: | |||
| 364 | /* | |||
| 365 | * If time for real time timer has passed return 0, | |||
| 366 | * else return difference between current time and | |||
| 367 | * time for the timer to go off. | |||
| 368 | */ | |||
| 369 | aitv = p->p_realtimer; | |||
| 370 | if (timerisset(&p->p_rtime)((&p->p_rtime)->tv_sec || (&p->p_rtime)-> tv_usec)) { | |||
| 371 | struct timeval now; | |||
| 372 | ||||
| 373 | microuptime(&now); | |||
| 374 | if (timercmp(&p->p_rtime, &now, <)(((&p->p_rtime)->tv_sec == (&now)->tv_sec) ? ((&p->p_rtime)->tv_usec < (&now)->tv_usec ) : ((&p->p_rtime)->tv_sec < (&now)->tv_sec ))) | |||
| 375 | timerclear(&aitv.it_value)(&aitv.it_value)->tv_sec = (&aitv.it_value)->tv_usec = 0; | |||
| 376 | else { | |||
| 377 | aitv.it_value = p->p_rtime; | |||
| 378 | timevalsub(&aitv.it_value, &now); | |||
| 379 | } | |||
| 380 | } | |||
| 381 | else | |||
| 382 | timerclear(&aitv.it_value)(&aitv.it_value)->tv_sec = (&aitv.it_value)->tv_usec = 0; | |||
| 383 | break; | |||
| 384 | ||||
| 385 | case ITIMER_VIRTUAL1: | |||
| 386 | aitv = p->p_vtimer_user; | |||
| 387 | break; | |||
| 388 | ||||
| 389 | case ITIMER_PROF2: | |||
| 390 | aitv = p->p_vtimer_prof; | |||
| 391 | break; | |||
| 392 | } | |||
| 393 | ||||
| 394 | proc_spinunlock(p); | |||
| 395 | ||||
| 396 | if (IS_64BIT_PROCESS(p)) { | |||
| 397 | struct user64_itimerval user_itv; | |||
| 398 | bzero(&user_itv, sizeof (user_itv)); | |||
| 399 | user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec; | |||
| 400 | user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec; | |||
| 401 | user_itv.it_value.tv_sec = aitv.it_value.tv_sec; | |||
| 402 | user_itv.it_value.tv_usec = aitv.it_value.tv_usec; | |||
| 403 | return (copyout((caddr_t)&user_itv, uap->itv, sizeof (user_itv))); | |||
| 404 | } else { | |||
| 405 | struct user32_itimerval user_itv; | |||
| 406 | bzero(&user_itv, sizeof (user_itv)); | |||
| 407 | user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec; | |||
| 408 | user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec; | |||
| 409 | user_itv.it_value.tv_sec = aitv.it_value.tv_sec; | |||
| 410 | user_itv.it_value.tv_usec = aitv.it_value.tv_usec; | |||
| 411 | return (copyout((caddr_t)&user_itv, uap->itv, sizeof (user_itv))); | |||
| 412 | } | |||
| 413 | } | |||
| 414 | ||||
| 415 | /* | |||
| 416 | * Returns: 0 Success | |||
| 417 | * EINVAL Invalid argument | |||
| 418 | * copyin:EFAULT Bad address | |||
| 419 | * getitimer:EINVAL Invalid argument | |||
| 420 | * getitimer:EFAULT Bad address | |||
| 421 | */ | |||
| 422 | /* ARGSUSED */ | |||
| 423 | int | |||
| 424 | setitimer(struct proc *p, struct setitimer_args *uap, int32_t *retval) | |||
| 425 | { | |||
| 426 | struct itimerval aitv; | |||
| 427 | user_addr_t itvp; | |||
| 428 | int error; | |||
| 429 | ||||
| 430 | bzero(&aitv, sizeof(aitv)); | |||
| 431 | ||||
| 432 | if (uap->which > ITIMER_PROF2) | |||
| 433 | return (EINVAL22); | |||
| 434 | if ((itvp = uap->itv)) { | |||
| 435 | if (IS_64BIT_PROCESS(p)) { | |||
| 436 | struct user64_itimerval user_itv; | |||
| 437 | if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (user_itv)))) | |||
| 438 | return (error); | |||
| 439 | aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec; | |||
| 440 | aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec; | |||
| 441 | aitv.it_value.tv_sec = user_itv.it_value.tv_sec; | |||
| 442 | aitv.it_value.tv_usec = user_itv.it_value.tv_usec; | |||
| 443 | } else { | |||
| 444 | struct user32_itimerval user_itv; | |||
| 445 | if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (user_itv)))) | |||
| 446 | return (error); | |||
| 447 | aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec; | |||
| 448 | aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec; | |||
| 449 | aitv.it_value.tv_sec = user_itv.it_value.tv_sec; | |||
| 450 | aitv.it_value.tv_usec = user_itv.it_value.tv_usec; | |||
| 451 | } | |||
| 452 | } | |||
| 453 | if ((uap->itv = uap->oitv) && (error = getitimer(p, (struct getitimer_args *)uap, retval))) | |||
| 454 | return (error); | |||
| 455 | if (itvp == 0) | |||
| 456 | return (0); | |||
| 457 | if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval)) | |||
| 458 | return (EINVAL22); | |||
| 459 | ||||
| 460 | switch (uap->which) { | |||
| 461 | ||||
| 462 | case ITIMER_REAL0: | |||
| 463 | proc_spinlock(p); | |||
| 464 | if (timerisset(&aitv.it_value)((&aitv.it_value)->tv_sec || (&aitv.it_value)-> tv_usec)) { | |||
| 465 | microuptime(&p->p_rtime); | |||
| 466 | timevaladd(&p->p_rtime, &aitv.it_value); | |||
| 467 | p->p_realtimer = aitv; | |||
| 468 | if (!thread_call_enter_delayed_with_leeway(p->p_rcall, NULL((void *)0), | |||
| 469 | tvtoabstime(&p->p_rtime), 0, THREAD_CALL_DELAY_USER_NORMAL0x10)) | |||
| 470 | p->p_ractive++; | |||
| 471 | } else { | |||
| 472 | timerclear(&p->p_rtime)(&p->p_rtime)->tv_sec = (&p->p_rtime)->tv_usec = 0; | |||
| 473 | p->p_realtimer = aitv; | |||
| 474 | if (thread_call_cancel(p->p_rcall)) | |||
| 475 | p->p_ractive--; | |||
| 476 | } | |||
| 477 | proc_spinunlock(p); | |||
| 478 | ||||
| 479 | break; | |||
| 480 | ||||
| 481 | ||||
| 482 | case ITIMER_VIRTUAL1: | |||
| 483 | if (timerisset(&aitv.it_value)((&aitv.it_value)->tv_sec || (&aitv.it_value)-> tv_usec)) | |||
| 484 | task_vtimer_set(p->task, TASK_VTIMER_USER0x01); | |||
| 485 | else | |||
| 486 | task_vtimer_clear(p->task, TASK_VTIMER_USER0x01); | |||
| 487 | ||||
| 488 | proc_spinlock(p); | |||
| 489 | p->p_vtimer_user = aitv; | |||
| 490 | proc_spinunlock(p); | |||
| 491 | break; | |||
| 492 | ||||
| 493 | case ITIMER_PROF2: | |||
| 494 | if (timerisset(&aitv.it_value)((&aitv.it_value)->tv_sec || (&aitv.it_value)-> tv_usec)) | |||
| 495 | task_vtimer_set(p->task, TASK_VTIMER_PROF0x02); | |||
| 496 | else | |||
| 497 | task_vtimer_clear(p->task, TASK_VTIMER_PROF0x02); | |||
| 498 | ||||
| 499 | proc_spinlock(p); | |||
| 500 | p->p_vtimer_prof = aitv; | |||
| 501 | proc_spinunlock(p); | |||
| 502 | break; | |||
| 503 | } | |||
| 504 | ||||
| 505 | return (0); | |||
| 506 | } | |||
| 507 | ||||
| 508 | /* | |||
| 509 | * Real interval timer expired: | |||
| 510 | * send process whose timer expired an alarm signal. | |||
| 511 | * If time is not set up to reload, then just return. | |||
| 512 | * Else compute next time timer should go off which is > current time. | |||
| 513 | * This is where delay in processing this timeout causes multiple | |||
| 514 | * SIGALRM calls to be compressed into one. | |||
| 515 | */ | |||
| 516 | void | |||
| 517 | realitexpire( | |||
| 518 | struct proc *p) | |||
| 519 | { | |||
| 520 | struct proc *r; | |||
| 521 | struct timeval t; | |||
| 522 | ||||
| 523 | r = proc_find(p->p_pid); | |||
| 524 | ||||
| 525 | proc_spinlock(p); | |||
| 526 | ||||
| 527 | assert(p->p_ractive > 0)((void)0); | |||
| 528 | ||||
| 529 | if (--p->p_ractive > 0 || r != p) { | |||
| 530 | /* | |||
| 531 | * bail, because either proc is exiting | |||
| 532 | * or there's another active thread call | |||
| 533 | */ | |||
| 534 | proc_spinunlock(p); | |||
| 535 | ||||
| 536 | if (r != NULL((void *)0)) | |||
| 537 | proc_rele(r); | |||
| 538 | return; | |||
| 539 | } | |||
| 540 | ||||
| 541 | if (!timerisset(&p->p_realtimer.it_interval)((&p->p_realtimer.it_interval)->tv_sec || (&p-> p_realtimer.it_interval)->tv_usec)) { | |||
| 542 | /* | |||
| 543 | * p_realtimer was cleared while this call was pending, | |||
| 544 | * send one last SIGALRM, but don't re-arm | |||
| 545 | */ | |||
| 546 | timerclear(&p->p_rtime)(&p->p_rtime)->tv_sec = (&p->p_rtime)->tv_usec = 0; | |||
| 547 | proc_spinunlock(p); | |||
| 548 | ||||
| 549 | psignal(p, SIGALRM14); | |||
| 550 | proc_rele(p); | |||
| 551 | return; | |||
| 552 | } | |||
| 553 | ||||
| 554 | proc_spinunlock(p); | |||
| 555 | ||||
| 556 | /* | |||
| 557 | * Send the signal before re-arming the next thread call, | |||
| 558 | * so in case psignal blocks, we won't create yet another thread call. | |||
| 559 | */ | |||
| 560 | ||||
| 561 | psignal(p, SIGALRM14); | |||
| 562 | ||||
| 563 | proc_spinlock(p); | |||
| 564 | ||||
| 565 | /* Should we still re-arm the next thread call? */ | |||
| 566 | if (!timerisset(&p->p_realtimer.it_interval)((&p->p_realtimer.it_interval)->tv_sec || (&p-> p_realtimer.it_interval)->tv_usec)) { | |||
| 567 | timerclear(&p->p_rtime)(&p->p_rtime)->tv_sec = (&p->p_rtime)->tv_usec = 0; | |||
| 568 | proc_spinunlock(p); | |||
| 569 | ||||
| 570 | proc_rele(p); | |||
| 571 | return; | |||
| 572 | } | |||
| 573 | ||||
| 574 | microuptime(&t); | |||
| 575 | timevaladd(&p->p_rtime, &p->p_realtimer.it_interval); | |||
| 576 | ||||
| 577 | if (timercmp(&p->p_rtime, &t, <=)(((&p->p_rtime)->tv_sec == (&t)->tv_sec) ? ( (&p->p_rtime)->tv_usec <= (&t)->tv_usec) : ((&p->p_rtime)->tv_sec <= (&t)->tv_sec))) { | |||
| 578 | if ((p->p_rtime.tv_sec + 2) >= t.tv_sec) { | |||
| 579 | for (;;) { | |||
| 580 | timevaladd(&p->p_rtime, &p->p_realtimer.it_interval); | |||
| 581 | if (timercmp(&p->p_rtime, &t, >)(((&p->p_rtime)->tv_sec == (&t)->tv_sec) ? ( (&p->p_rtime)->tv_usec > (&t)->tv_usec) : ((&p->p_rtime)->tv_sec > (&t)->tv_sec))) | |||
| 582 | break; | |||
| 583 | } | |||
| 584 | } else { | |||
| 585 | p->p_rtime = p->p_realtimer.it_interval; | |||
| 586 | timevaladd(&p->p_rtime, &t); | |||
| 587 | } | |||
| 588 | } | |||
| 589 | ||||
| 590 | assert(p->p_rcall != NULL)((void)0); | |||
| 591 | ||||
| 592 | if (!thread_call_enter_delayed_with_leeway(p->p_rcall, NULL((void *)0), tvtoabstime(&p->p_rtime), 0, | |||
| 593 | THREAD_CALL_DELAY_USER_NORMAL0x10)) { | |||
| 594 | p->p_ractive++; | |||
| 595 | } | |||
| 596 | ||||
| 597 | proc_spinunlock(p); | |||
| 598 | ||||
| 599 | proc_rele(p); | |||
| 600 | } | |||
| 601 | ||||
| 602 | /* | |||
| 603 | * Called once in proc_exit to clean up after an armed or pending realitexpire | |||
| 604 | * | |||
| 605 | * This will only be called after the proc refcount is drained, | |||
| 606 | * so realitexpire cannot be currently holding a proc ref. | |||
| 607 | * i.e. it will/has gotten PROC_NULL from proc_find. | |||
| 608 | */ | |||
| 609 | void | |||
| 610 | proc_free_realitimer(proc_t p) | |||
| 611 | { | |||
| 612 | proc_spinlock(p); | |||
| 613 | ||||
| 614 | assert(p->p_rcall != NULL)((void)0); | |||
| 615 | assert(p->p_refcount == 0)((void)0); | |||
| 616 | ||||
| 617 | timerclear(&p->p_realtimer.it_interval)(&p->p_realtimer.it_interval)->tv_sec = (&p-> p_realtimer.it_interval)->tv_usec = 0; | |||
| 618 | ||||
| 619 | if (thread_call_cancel(p->p_rcall)) { | |||
| 620 | assert(p->p_ractive > 0)((void)0); | |||
| 621 | p->p_ractive--; | |||
| 622 | } | |||
| 623 | ||||
| 624 | while (p->p_ractive > 0) { | |||
| 625 | proc_spinunlock(p); | |||
| 626 | ||||
| 627 | delay(1); | |||
| 628 | ||||
| 629 | proc_spinlock(p); | |||
| 630 | } | |||
| 631 | ||||
| 632 | thread_call_t call = p->p_rcall; | |||
| 633 | p->p_rcall = NULL((void *)0); | |||
| 634 | ||||
| 635 | proc_spinunlock(p); | |||
| 636 | ||||
| 637 | thread_call_free(call); | |||
| 638 | } | |||
| 639 | ||||
| 640 | /* | |||
| 641 | * Check that a proposed value to load into the .it_value or | |||
| 642 | * .it_interval part of an interval timer is acceptable. | |||
| 643 | */ | |||
| 644 | int | |||
| 645 | itimerfix( | |||
| 646 | struct timeval *tv) | |||
| 647 | { | |||
| 648 | ||||
| 649 | if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || | |||
| 650 | tv->tv_usec < 0 || tv->tv_usec >= 1000000) | |||
| 651 | return (EINVAL22); | |||
| 652 | return (0); | |||
| 653 | } | |||
| 654 | ||||
| 655 | int | |||
| 656 | timespec_is_valid(const struct timespec *ts) | |||
| 657 | { | |||
| 658 | /* The INT32_MAX limit ensures the timespec is safe for clock_*() functions | |||
| 659 | * which accept 32-bit ints. */ | |||
| 660 | if (ts->tv_sec < 0 || ts->tv_sec > INT32_MAX2147483647 || | |||
| 661 | ts->tv_nsec < 0 || (unsigned long long)ts->tv_nsec > NSEC_PER_SEC1000000000ull) { | |||
| 662 | return 0; | |||
| 663 | } | |||
| 664 | return 1; | |||
| 665 | } | |||
| 666 | ||||
| 667 | /* | |||
| 668 | * Decrement an interval timer by a specified number | |||
| 669 | * of microseconds, which must be less than a second, | |||
| 670 | * i.e. < 1000000. If the timer expires, then reload | |||
| 671 | * it. In this case, carry over (usec - old value) to | |||
| 672 | * reduce the value reloaded into the timer so that | |||
| 673 | * the timer does not drift. This routine assumes | |||
| 674 | * that it is called in a context where the timers | |||
| 675 | * on which it is operating cannot change in value. | |||
| 676 | */ | |||
| 677 | int | |||
| 678 | itimerdecr(proc_t p, | |||
| 679 | struct itimerval *itp, int usec) | |||
| 680 | { | |||
| 681 | ||||
| 682 | proc_spinlock(p); | |||
| 683 | ||||
| 684 | if (itp->it_value.tv_usec < usec) { | |||
| 685 | if (itp->it_value.tv_sec == 0) { | |||
| 686 | /* expired, and already in next interval */ | |||
| 687 | usec -= itp->it_value.tv_usec; | |||
| 688 | goto expire; | |||
| 689 | } | |||
| 690 | itp->it_value.tv_usec += 1000000; | |||
| 691 | itp->it_value.tv_sec--; | |||
| 692 | } | |||
| 693 | itp->it_value.tv_usec -= usec; | |||
| 694 | usec = 0; | |||
| 695 | if (timerisset(&itp->it_value)((&itp->it_value)->tv_sec || (&itp->it_value )->tv_usec)) { | |||
| 696 | proc_spinunlock(p); | |||
| 697 | return (1); | |||
| 698 | } | |||
| 699 | /* expired, exactly at end of interval */ | |||
| 700 | expire: | |||
| 701 | if (timerisset(&itp->it_interval)((&itp->it_interval)->tv_sec || (&itp->it_interval )->tv_usec)) { | |||
| 702 | itp->it_value = itp->it_interval; | |||
| 703 | if (itp->it_value.tv_sec > 0) { | |||
| 704 | itp->it_value.tv_usec -= usec; | |||
| 705 | if (itp->it_value.tv_usec < 0) { | |||
| 706 | itp->it_value.tv_usec += 1000000; | |||
| 707 | itp->it_value.tv_sec--; | |||
| 708 | } | |||
| 709 | } | |||
| 710 | } else | |||
| 711 | itp->it_value.tv_usec = 0; /* sec is already 0 */ | |||
| 712 | proc_spinunlock(p); | |||
| 713 | return (0); | |||
| 714 | } | |||
| 715 | ||||
| 716 | /* | |||
| 717 | * Add and subtract routines for timevals. | |||
| 718 | * N.B.: subtract routine doesn't deal with | |||
| 719 | * results which are before the beginning, | |||
| 720 | * it just gets very confused in this case. | |||
| 721 | * Caveat emptor. | |||
| 722 | */ | |||
| 723 | void | |||
| 724 | timevaladd( | |||
| 725 | struct timeval *t1, | |||
| 726 | struct timeval *t2) | |||
| 727 | { | |||
| 728 | ||||
| 729 | t1->tv_sec += t2->tv_sec; | |||
| 730 | t1->tv_usec += t2->tv_usec; | |||
| 731 | timevalfix(t1); | |||
| 732 | } | |||
| 733 | void | |||
| 734 | timevalsub( | |||
| 735 | struct timeval *t1, | |||
| 736 | struct timeval *t2) | |||
| 737 | { | |||
| 738 | ||||
| 739 | t1->tv_sec -= t2->tv_sec; | |||
| 740 | t1->tv_usec -= t2->tv_usec; | |||
| 741 | timevalfix(t1); | |||
| 742 | } | |||
| 743 | void | |||
| 744 | timevalfix( | |||
| 745 | struct timeval *t1) | |||
| 746 | { | |||
| 747 | ||||
| 748 | if (t1->tv_usec < 0) { | |||
| 749 | t1->tv_sec--; | |||
| 750 | t1->tv_usec += 1000000; | |||
| 751 | } | |||
| 752 | if (t1->tv_usec >= 1000000) { | |||
| 753 | t1->tv_sec++; | |||
| 754 | t1->tv_usec -= 1000000; | |||
| 755 | } | |||
| 756 | } | |||
| 757 | ||||
| 758 | /* | |||
| 759 | * Return the best possible estimate of the time in the timeval | |||
| 760 | * to which tvp points. | |||
| 761 | */ | |||
| 762 | void | |||
| 763 | microtime( | |||
| 764 | struct timeval *tvp) | |||
| 765 | { | |||
| 766 | clock_sec_t tv_sec; | |||
| 767 | clock_usec_t tv_usec; | |||
| 768 | ||||
| 769 | clock_get_calendar_microtime(&tv_sec, &tv_usec); | |||
| 770 | ||||
| 771 | tvp->tv_sec = tv_sec; | |||
| 772 | tvp->tv_usec = tv_usec; | |||
| 773 | } | |||
| 774 | ||||
| 775 | void | |||
| 776 | microtime_with_abstime( | |||
| 777 | struct timeval *tvp, uint64_t *abstime) | |||
| 778 | { | |||
| 779 | clock_sec_t tv_sec; | |||
| 780 | clock_usec_t tv_usec; | |||
| 781 | ||||
| 782 | clock_get_calendar_absolute_and_microtime(&tv_sec, &tv_usec, abstime); | |||
| 783 | ||||
| 784 | tvp->tv_sec = tv_sec; | |||
| 785 | tvp->tv_usec = tv_usec; | |||
| 786 | } | |||
| 787 | ||||
| 788 | void | |||
| 789 | microuptime( | |||
| 790 | struct timeval *tvp) | |||
| 791 | { | |||
| 792 | clock_sec_t tv_sec; | |||
| 793 | clock_usec_t tv_usec; | |||
| 794 | ||||
| 795 | clock_get_system_microtime(&tv_sec, &tv_usec); | |||
| 796 | ||||
| 797 | tvp->tv_sec = tv_sec; | |||
| 798 | tvp->tv_usec = tv_usec; | |||
| 799 | } | |||
| 800 | ||||
| 801 | /* | |||
| 802 | * Ditto for timespec. | |||
| 803 | */ | |||
| 804 | void | |||
| 805 | nanotime( | |||
| 806 | struct timespec *tsp) | |||
| 807 | { | |||
| 808 | clock_sec_t tv_sec; | |||
| 809 | clock_nsec_t tv_nsec; | |||
| 810 | ||||
| 811 | clock_get_calendar_nanotime(&tv_sec, &tv_nsec); | |||
| 812 | ||||
| 813 | tsp->tv_sec = tv_sec; | |||
| 814 | tsp->tv_nsec = tv_nsec; | |||
| 815 | } | |||
| 816 | ||||
| 817 | void | |||
| 818 | nanouptime( | |||
| 819 | struct timespec *tsp) | |||
| 820 | { | |||
| 821 | clock_sec_t tv_sec; | |||
| 822 | clock_nsec_t tv_nsec; | |||
| 823 | ||||
| 824 | clock_get_system_nanotime(&tv_sec, &tv_nsec); | |||
| 825 | ||||
| 826 | tsp->tv_sec = tv_sec; | |||
| 827 | tsp->tv_nsec = tv_nsec; | |||
| 828 | } | |||
| 829 | ||||
| 830 | uint64_t | |||
| 831 | tvtoabstime( | |||
| 832 | struct timeval *tvp) | |||
| 833 | { | |||
| 834 | uint64_t result, usresult; | |||
| 835 | ||||
| 836 | clock_interval_to_absolutetime_interval( | |||
| 837 | tvp->tv_sec, NSEC_PER_SEC1000000000ull, &result); | |||
| 838 | clock_interval_to_absolutetime_interval( | |||
| 839 | tvp->tv_usec, NSEC_PER_USEC1000ull, &usresult); | |||
| 840 | ||||
| 841 | return (result + usresult); | |||
| 842 | } | |||
| 843 | ||||
| 844 | uint64_t | |||
| 845 | tstoabstime(struct timespec *ts) | |||
| 846 | { | |||
| 847 | uint64_t abstime_s, abstime_ns; | |||
| 848 | clock_interval_to_absolutetime_interval(ts->tv_sec, NSEC_PER_SEC1000000000ull, &abstime_s); | |||
| 849 | clock_interval_to_absolutetime_interval(ts->tv_nsec, 1, &abstime_ns); | |||
| 850 | return abstime_s + abstime_ns; | |||
| 851 | } | |||
| 852 | ||||
| 853 | #if NETWORKING1 | |||
| 854 | /* | |||
| 855 | * ratecheck(): simple time-based rate-limit checking. | |||
| 856 | */ | |||
| 857 | int | |||
| 858 | ratecheck(struct timeval *lasttime, const struct timeval *mininterval) | |||
| 859 | { | |||
| 860 | struct timeval tv, delta; | |||
| 861 | int rv = 0; | |||
| 862 | ||||
| 863 | net_uptime2timeval(&tv); | |||
| 864 | delta = tv; | |||
| 865 | timevalsub(&delta, lasttime); | |||
| 866 | ||||
| 867 | /* | |||
| 868 | * check for 0,0 is so that the message will be seen at least once, | |||
| 869 | * even if interval is huge. | |||
| 870 | */ | |||
| 871 | if (timevalcmp(&delta, mininterval, >=)(((&delta)->tv_sec == (mininterval)->tv_sec) ? ((& delta)->tv_usec >= (mininterval)->tv_usec) : ((& delta)->tv_sec >= (mininterval)->tv_sec)) || | |||
| 872 | (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { | |||
| 873 | *lasttime = tv; | |||
| 874 | rv = 1; | |||
| 875 | } | |||
| 876 | ||||
| 877 | return (rv); | |||
| 878 | } | |||
| 879 | ||||
| 880 | /* | |||
| 881 | * ppsratecheck(): packets (or events) per second limitation. | |||
| 882 | */ | |||
| 883 | int | |||
| 884 | ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) | |||
| 885 | { | |||
| 886 | struct timeval tv, delta; | |||
| 887 | int rv; | |||
| 888 | ||||
| 889 | net_uptime2timeval(&tv); | |||
| 890 | ||||
| 891 | timersub(&tv, lasttime, &delta)do { (&delta)->tv_sec = (&tv)->tv_sec - (lasttime )->tv_sec; (&delta)->tv_usec = (&tv)->tv_usec - (lasttime)->tv_usec; if ((&delta)->tv_usec < 0 ) { (&delta)->tv_sec--; (&delta)->tv_usec += 1000000 ; } } while (0); | |||
| 892 | ||||
| 893 | /* | |||
| 894 | * Check for 0,0 so that the message will be seen at least once. | |||
| 895 | * If more than one second has passed since the last update of | |||
| 896 | * lasttime, reset the counter. | |||
| 897 | * | |||
| 898 | * we do increment *curpps even in *curpps < maxpps case, as some may | |||
| 899 | * try to use *curpps for stat purposes as well. | |||
| 900 | */ | |||
| 901 | if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) || | |||
| 902 | delta.tv_sec >= 1) { | |||
| 903 | *lasttime = tv; | |||
| 904 | *curpps = 0; | |||
| 905 | rv = 1; | |||
| 906 | } else if (maxpps < 0) | |||
| 907 | rv = 1; | |||
| 908 | else if (*curpps < maxpps) | |||
| 909 | rv = 1; | |||
| 910 | else | |||
| 911 | rv = 0; | |||
| 912 | ||||
| 913 | #if 1 /* DIAGNOSTIC? */ | |||
| 914 | /* be careful about wrap-around */ | |||
| 915 | if (*curpps + 1 > 0) | |||
| 916 | *curpps = *curpps + 1; | |||
| 917 | #else | |||
| 918 | /* | |||
| 919 | * assume that there's not too many calls to this function. | |||
| 920 | * not sure if the assumption holds, as it depends on *caller's* | |||
| 921 | * behavior, not the behavior of this function. | |||
| 922 | * IMHO it is wrong to make assumption on the caller's behavior, | |||
| 923 | * so the above #if is #if 1, not #ifdef DIAGNOSTIC. | |||
| 924 | */ | |||
| 925 | *curpps = *curpps + 1; | |||
| 926 | #endif | |||
| 927 | ||||
| 928 | return (rv); | |||
| 929 | } | |||
| 930 | #endif /* NETWORKING */ | |||
| 931 | ||||
| 932 | void | |||
| 933 | time_zone_slock_init(void) | |||
| 934 | { | |||
| 935 | /* allocate lock group attribute and group */ | |||
| 936 | tz_slock_grp_attr = lck_grp_attr_alloc_init(); | |||
| 937 | ||||
| 938 | tz_slock_grp = lck_grp_alloc_init("tzlock", tz_slock_grp_attr); | |||
| 939 | ||||
| 940 | /* Allocate lock attribute */ | |||
| 941 | tz_slock_attr = lck_attr_alloc_init(); | |||
| 942 | ||||
| 943 | /* Allocate the spin lock */ | |||
| 944 | tz_slock = lck_spin_alloc_init(tz_slock_grp, tz_slock_attr); | |||
| 945 | } |